• Laser & Optoelectronics Progress
  • Vol. 56, Issue 9, 090002 (2019)
Yang Liu1、2、*, Zongsheng Chen1、2, and Jiaming Shi1、2
Author Affiliations
  • 1 State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei, Anhui 230037, China
  • 2 Advanced Laser Technology Laboratory of Anhui Province, Hefei, Anhui 230037, China
  • show less
    DOI: 10.3788/LOP56.090002 Cite this Article Set citation alerts
    Yang Liu, Zongsheng Chen, Jiaming Shi. Research Progress on Electromagnetic Wave Transmission via Femtosecond-Laser Plasma Channel[J]. Laser & Optoelectronics Progress, 2019, 56(9): 090002 Copy Citation Text show less
    References

    [1] Xia X R, Yin C Y. Analysis on propagation properties of plasma channel antenna[J]. Journal of Microwaves, 25, 19-24(2009).

    [2] Xia X R, Yin C Y. Propagation properties of laser plasma channel antenna in finite magnetic field[J]. High Power Laser and Particle Beams, 21, 1833-1838(2009).

    [3] Ren Y, Li F J, Dong X et al. Research of guiding energy with plasma channel induced by femtosecond laser in air[J]. Chinese Optics, 5, 133-142(2012).

    [4] Bogatskaya A V, Bin H, Popov A M et al. Nonequilibrium laser plasma of noble gases: prospects for amplification and guiding of the microwave radiation[J]. Physics of Plasmas, 23, 093510(2016). http://scitation.aip.org/content/aip/journal/pop/23/9/10.1063/1.4962515

    [5] Vinoth Kumar L, Manikanta E, Leela C et al. Effect of laser intensity on radio frequency emissions from laser induced breakdown of atmospheric air[J]. Journal of Applied Physics, 119, 214904(2016). http://scitation.aip.org/content/aip/journal/jap/119/21/10.1063/1.4953211

    [6] Dai Y J, Song X W, Gao X et al. Characteristics of radio-frequency emission from nanosecond laser-induced breakdown plasma of air[J]. Acta Physica Sinica, 66, 185201(2017).

    [7] Li X H, Yu X. Application of laser plasma ignition in aerospace propulsion systems[J]. Infrared and Laser Engineering, 45, 1136001(2016).

    [8] Wang B Y, Chen Y N. Research on technology of air plasma channel discharging induced by femtosecond laser[J]. Electro-Optic Technology Application, 32, 24-27(2017).

    [9] Nie J S, Hu Y Z. Research progress in controlling femtosecond laser filamentation in atmosphere[J]. Journal of National University of Defense Technology, 40, 1-8(2018).

    [10] Brodeur A, Chien C Y, Ilkov F A et al. Moving focus in the propagation of ultrashort laser pulses in air[J]. Optics Letters, 22, 304-306(1997). http://www.opticsinfobase.org/abstract.cfm?URI=ol-22-5-304

    [11] Marburger J H. Self-focusing: theory[J]. Progress in Quantum Electronics, 4, 35-110(1975).

    [12] Braun A, Korn G, Liu X et al. Self-channeling of high-peak-power femtosecond laser pulses in air[J]. Optics Letters, 20, 73-75(1995). http://www.opticsinfobase.org/abstract.cfm?id=34025

    [13] Xi T T, Lu X, Zhang J. Interaction of light filaments generated by femtosecond laser pulses in air[J]. Physical Review Letters, 96, 025003(2006). http://www.ncbi.nlm.nih.gov/pubmed/16486590

    [14] Hao Z Q, Zhang J, Zhang Z et al. Characteristics of multiple filaments generated by femtosecond laser pulses in air: prefocused versus free propagation[J]. Physical Review E, 74, 066402(2006). http://europepmc.org/abstract/MED/17280154

    [15] Hao Z Q, Zhang J, Lu X et al. Characteristics of multiple filaments generated by femtosecond laser pulses in air: spatial evolution of multiple filaments in air induced by femtosecond laser pulses[J]. Optics Letters, 14, 773-778(2006).

    [16] Hao Z Q, Zhang J, Xi T T et al. Optimization of multiple filamentation of femtosecond laser pulses in air using a pinhole[J]. Optics Express, 15, 16102-16109(2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-24-16102

    [17] Zhang Y J, Song H Y, Liu H Y et al. Fabrication of millimeter-scaled holes by femtosecond laser filamentation[J]. Chinese Journal of Lasers, 44, 0402012(2017).

    [18] Du S Z, Zhu Z B, Liu Y X et al. Optimization design scheme of femtosecond laser induced corona discharge[J]. Chinese Journal of Lasers, 44, 0601009(2017).

    [19] Yao S, Song C, Gao X et al. Effect of pulse energy on formation of femtosecond laser plasma filament[J]. Laser & Optoelectronics Progress, 54, 121901(2017).

    [20] Alshershby M, Ren Y, Qin J et al. Diagnosis of femtosecond plasma filament by channeling microwaves along the filament[J]. Applied Physics Letters, 102, 204101(2013). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6517836

    [21] Qi X X, Ma C L, Lin W B. Pressure effects on the femtosecond laser filamentation[J]. Optics Communications, 358, 126-131(2016). http://www.sciencedirect.com/science/article/pii/S0030401815300924

    [22] Yang D P, Li S Y, Jiang Y F et al. Temperature and electron density in femtosecond filament-induced Cu plasma[J]. Acta Physica Sinica, 66, 115201(2017).

    [23] Li S Y, Jin M X. Advances in femtosecond laser filamentation in air[J]. China Sciencepaper, 11, 1934-1941(2016).

    [24] Sun Z H, Dong C, Zhang Y C et al. Absorption of 10 GHz electromagnetic waves by femtosecond filaments array[J]. High Power Laser and Particle Beams, 30, 053201(2018).

    [25] Papeer J, Botton M, Gordon D et al. Extended lifetime of high density plasma filament generated by a dual femtosecond-nanosecond laser pulse in air[J]. New Journal of Physics, 16, 123046(2014). http://adsabs.harvard.edu/abs/2014njph...16l3046p

    [26] Camino A, Hao Z Q, Liu X et al. High spectral power femtosecond supercontinuum source by use of microlens array[J]. Optics Letters, 39, 747-750(2014). http://europepmc.org/abstract/med/24562196

    [27] Point G, Brelet Y, Houard A et al. Superfilamentation in air[J]. Physical Review Letters, 112, 223902(2014).

    [28] Camino A, Xi T T, Hao Z Q et al. Femtosecond filament array generated in air[J]. Applied Physics B, 121, 363-368(2015). http://link.springer.com/article/10.1007/s00340-015-6238-2

    [29] Hu Y Z, Nie J S, Sun K et al. Generation of periodic filament arrays in air through two-dimensional acousto-optic modulation[J]. Journal of the Optical Society of America B, 33, 2144-2148(2016). http://adsabs.harvard.edu/abs/2016JOSAB..33.2144H

    [30] Englesbe A C, He Z H, Nees J A et al. Control of the configuration of multiple femtosecond filaments in air by adaptive wavefront manipulation[J]. Optics Express, 24, 6071-6082(2016). http://www.opticsinfobase.org/abstract.cfm?uri=oe-24-6-6071

    [31] Götte N, Winkler T, Meinl T et al. Temporal Airy pulses for controlled high aspect ratio nanomachining of dielectrics[J]. Optica, 3, 389-395(2016). http://www.onacademic.com/detail/journal_1000040491430010_dcb6.html

    [32] Butkus S, Alesenkov A, Paipulas D et al. Micromachining of transparent, semiconducting and metallic substrates using femtosecond laser beams[J]. Journal of Laser Micro, 11, 81-86(2016).

    [33] Liu Y H, Sun H Y, Liu J S et al. Laser-filamentation-induced water condensation and snow formation in a cloud chamber filled with different ambient gases[J]. Optics Express, 24, 7364-7373(2016). http://europepmc.org/abstract/med/27137026

    [34] Liang H, Sun H Y, Liu Y H et al. Chirp control of femtosecond laser-filamentation-induced snow formation in a cloud chamber[J]. Chinese Optics Letters, 13, 033201(2015). http://www.opticsjournal.net/Articles/Abstract?aid=OJ150326000143lRoUrX

    [35] Friedman D C. Electromagnetic (EM) wave attachment to laser plasma filaments, UMI: 335196[R]. Hoboken:Stevens Institute of Technology(2009).

    [36] Li F J. Transmission of RF electromagnetic energy by femtosecond laser plasma channels[D]. Changchun: Changchun University of Science and Technology(2012).

    [37] Dong X. EM radiation from femtosecond laser plasma filaments and attachment of RF EM wave to the filaments[D]. Changchun: Changchun University of Science and Technology(2012).

    [38] Ren Y, Alshershby M, Qin J et al. Microwave guiding in air along single femtosecond laser filament[J]. Journal of Applied Physics, 113, 094904(2013). http://scitation.aip.org/content/aip/journal/jap/113/9/10.1063/1.4794518

    [39] Théberge F, Gravel J F, Kieffer J C et al. Broadband and long lifetime plasma-antenna in air initiated by laser-guided discharge[J]. Applied Physics Letters, 111, 073501(2017).

    [40] Brelet Y, Houard A, Point G et al. Radiofrequency plasma antenna generated by femtosecond laser filaments in air[J]. Applied Physics Letters, 101, 264106(2012). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6397011

    [41] Prade B, Houard A, Larour J et al. Transfer of microwave energy along a filament plasma column in air[J]. Applied Physics B, 123, 40(2017). http://link.springer.com/10.1007/s00340-016-6616-4

    [42] Bogatov N A, Kuznetsov A I, Smirnov A I et al. Channeling of microwave radiation in a double line containing a plasma filament produced by intense femtosecond laser pulses in air[J]. Quantum Electronics, 39, 985-988(2009). http://www.mathnet.ru/eng/qe14113

    [43] Ren Y, Alshershby M, Hao Z Q et al. Microwave guiding along double femtosecond filaments in air[J]. Physical Review E, 88, 013104(2013). http://www.ncbi.nlm.nih.gov/pubmed/23944565

    [44] Shen H M. Plasma waveguide: a concept to transfer electromagnetic energy in space[J]. Journal of Applied Physics, 69, 6827-6835(1991). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5139164

    [45] Gurevicha A V, Borisov N D, Milikh G M. Physics of microwave discharge: artificially ionized regions in the atmosphere[M]. New York: Gordon and Breach Science Publishers(1997).

    [46] Dormidonov A E, Valuev V V, Dmitriev V L et al. Laser filament induced microwave waveguide in air[J]. Proceedings of SPIE, 6733, 67332S(2007). http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2007SPIE.6733E..40D

    [47] Musin R R, Shneider M N, Zheltikov A M et al. Guiding radar signals by arrays of laser-induced filaments: finite-difference analysis[J]. Applied Optics, 46, 5593-5597(2007). http://www.ncbi.nlm.nih.gov/pubmed/17694103

    [48] Valuev V V, Dormidonov A E, Kandidov V P et al. Plasma channels formed by a set of filaments as a guiding system for microwave radiation[J]. Journal of Communications Technology and Electronics, 55, 208-214(2010). http://link.springer.com/article/10.1134/S1064226910020130

    [49] Alshershby M, Hao Z Q, Lin J Q. Hollow cylindrical plasma filament waveguide with discontinuous finite thickness cladding[J]. Physics of Plasmas, 20, 013501(2013). http://scitation.aip.org/content/aip/journal/pop/20/1/10.1063/1.4775727

    [50] Alshershby M, Hao Z Q, Lin J Q. Analysis of microwave leaky modes propagating through laser plasma filaments column waveguide[J]. Physics of Plasmas, 19, 123504(2012). http://scitation.aip.org/content/aip/journal/pop/19/12/10.1063/1.4771595

    [51] Bogatskaya A V, Volkova E A, Popov A M. Nonequilibrium plasma channel in gaseous media formed by powerful UV laser as a waveguide for transportation and amplification of short microwave pulses[J]. Laser Physics Letters, 12, 035301(2015). http://adsabs.harvard.edu/abs/2015LaPhL..12c5301B

    [52] Châteauneuf M, Payeur S, Dubois J et al. Microwave guiding in air by a cylindrical filament array waveguide[J]. Applied Physics Letters, 92, 091104(2008). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4834233

    [53] Zvorykin V D, Levchenko A O, Ustinovskii N N et al. Transfer of microwave radiation in sliding mode plasma waveguides[J]. JETP Letters, 91, 226-230(2010). http://link.springer.com/article/10.1134/S002136401005005X

    [54] Zvorykin V D, Levchenko A O, Shutov A V et al. Long-distance directed transfer of microwaves in tubular sliding-mode plasma waveguides produced by KrF laser in atmospheric air[J]. Physics of Plasmas, 19, 033509(2012). http://scitation.aip.org/content/aip/journal/pop/19/3/10.1063/1.3692090

    [55] Zvorykin V D, Ionin A A, Levchenko A O et al. Directed transfer of microwave radiation in sliding-mode plasma waveguides produced by ultraviolet laser in atmospheric air[J]. Applied Optics, 53, I31-I40(2014). http://europepmc.org/abstract/med/25402935

    Yang Liu, Zongsheng Chen, Jiaming Shi. Research Progress on Electromagnetic Wave Transmission via Femtosecond-Laser Plasma Channel[J]. Laser & Optoelectronics Progress, 2019, 56(9): 090002
    Download Citation