• Laser & Optoelectronics Progress
  • Vol. 60, Issue 7, 0736002 (2023)
Junjie Ding1, Chen Wang1, Zhou Ju1, Bowen Zhu1, Bohan Sang1, Bo Liu2, and Jianjun Yu1、*
Author Affiliations
  • 1Key Laboratory for Information Science of Electromagnetic Waves (MoE), Fudan University, Shanghai 200433, China
  • 2Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
  • show less
    DOI: 10.3788/LOP223344 Cite this Article Set citation alerts
    Junjie Ding, Chen Wang, Zhou Ju, Bowen Zhu, Bohan Sang, Bo Liu, Jianjun Yu. [J]. Laser & Optoelectronics Progress, 2023, 60(7): 0736002 Copy Citation Text show less
    References

    [1] Kobayashi T, Shimizu S, Nakamura M et al. 13.4-Tb/s WDM transmission over 1, 280 km repeated only with PPLN-based optical parametric inline amplifier[C](2021).

    [2] Kato T, Watanabe S, Yamauchi T et al. Whole band wavelength conversion for wideband transmission[C](2021).

    [3] Cai J X, Mazurczyk M V, Vedala G et al. 9 Tb/s transmission using 29 mW optical pump power per EDFA with 1.24 Tb/s/W power efficiency over 15, 050 km[C], Th4C.5(2021).

    [4] Ding J J, Sang B H, Wang Y Y et al. High spectral efficiency WDM transmission based on hybrid probabilistically and geometrically shaped 256QAM[J]. Journal of Lightwave Technology, 39, 5494-5501(2021).

    [5] Wang L, Gao M Y, Zhang Y L et al. Optical phase conjugation with complex-valued deep neural network for WDM 64-QAM coherent optical systems[J]. IEEE Photonics Journal, 13, 7200308(2021).

    [6] Xu J, Qiu Y, Deng N. Optical phase remodulation for Rayleigh noise mitigation in 10 Gb/s/channel WDM passive optical networks[J]. Chinese Optics Letters, 15, 060604(2017).

    [7] Yu S H, Luo M, Li X et al. Recent progress in an ‘ultra-high speed, ultra-large capacity, ultra-long distance’ optical transmission system (Invited Paper)[J]. Chinese Optics Letters, 14, 120003-120007(2016).

    [8] Kobayashi T, Morimoto M, Ogoshi H et al. PDM-16QAM WDM transmission with 2nd-order forward-pumped distributed Raman amplification utilizing incoherent pumping[C](2019).

    [9] Ionescu M, Renaudier J, Ghazisaeidi A et al. Optimization of power efficient spatial division multiplexed submarine cables using adaptive transponders and machine learning[J]. Journal of Lightwave Technology, 40, 1597-1604(2022).

    [10] Puttnam B J, Luís R S, Rademacher G et al. S, C and extended L-band transmission with doped fiber and distributed Raman amplification[C](2021).

    [11] Tan M M, Iqbal M A, Krzczanowicz L et al. Optimization of Raman amplification schemes for single-span high data rate coherent transmission systems[C](2021).

    [12] Bao H H, Jin W, Ho H L. Tuning of group delay with stimulated Raman scattering-induced dispersion in gas-filled optical fiber[J]. Chinese Optics Letters, 18, 060601(2020).

    [13] Nishikimi K, Sano A. Pumping scheme for ultra-wideband WDM transmission using distributed Raman amplification[C](2022).

    [14] Zheng L, Chen Z Y, Wu D M et al. Channel distributions of the transient power overshoot in backward-pumped Raman amplified WDM systems[J]. Chinese Optics Letters, 2, 503-504(2004).

    [15] Xue F, Qiu K, Chen Y. Research on WDM optical fiber transmission system based on fiber Raman amplifier[J]. Chinese Optics Letters, 1, 564-566(2003).

    [16] Lasagni C, Serena P, Bononi A. A Raman-aware enhanced GN-model to estimate the modulation format dependence of the SNR tilt in C+L band[C](2020).

    [17] Ferrari A, Pilori D, Virgillito E et al. Power control strategies in C+L optical line systems[C](2019).

    [18] Buglia H, Sillekens E, Vasylchenkova A et al. On the impact of launch power optimization and transceiver noise on the performance of ultra-wideband transmission systems[J]. Journal of Optical Communications and Networking, 14, B11-B21(2022).

    [19] Bononi A, Antona J C, Serena P et al. Pump-constrained capacity maximization: to flatten or not to flatten?[C](2021).

    [20] Lasagni C, Serena P, Bononi A et al. Power allocation optimization in the presence of stimulated Raman scattering[C](2021).

    [21] Häger C, Pfister H D. Nonlinear interference mitigation via deep neural networks[C], W3A.4(2018).

    [22] Wu H J, Chen J P, Liu X R et al. One-dimensional CNN-based intelligent recognition of vibrations in pipeline monitoring with DAS[J]. Journal of Lightwave Technology, 37, 4359-4366(2019).

    [23] Chen M A, Jin X Q, Li S B et al. Compensation of turbulence-induced wavefront aberration with convolutional neural networks for FSO systems[J]. Chinese Optics Letters, 19, 110601(2021).

    [24] Liu J W, Wang Y J, Yang H F et al. Transfer learning aided PT-CNN in coherent optical communication systems[C](2022).

    [25] Xu S F, Zou W W. Optical tensor core architecture for neural network training based on dual-layer waveguide topology and homodyne detection[J]. Chinese Optics Letters, 19, 082501(2021).

    [26] Zhang H T, Zhang L, Jiang Y et al. LSTM and ResNets deep learning aided end-to-end intelligent communication systems[C], 156-160(2021).

    [27] Zhang M, Xu B, Li X Y et al. Traffic estimation based on long short-term memory neural network for mobile front-haul with XG-PON[J]. Chinese Optics Letters, 17, 070603(2019).

    [28] Kong M, Sang B H, Wang C et al. 645-gbit/s/carrier PS-16QAM WDM coherent transmission over 6, 800 km using modified LSTM nonlinear equalizer[C](2021).

    [29] Wang C, Wang K H, Tan Y X et al. High-speed terahertz band radio-over-fiber system using hybrid time-frequency domain equalization[J]. IEEE Photonics Technology Letters, 34, 559-562(2022).

    [30] Sang B H, Zhou W, Tan Y X et al. Low complexity neural network equalization based on multi-symbol output technique for 200+ Gbps IM/DD short reach optical system[J]. Journal of Lightwave Technology, 40, 2890-2900(2022).

    [31] Freire P J, Osadchuk Y, Spinnler B et al. Performance versus complexity study of neural network equalizers in coherent optical systems[J]. Journal of Lightwave Technology, 39, 6085-6096(2021).

    Junjie Ding, Chen Wang, Zhou Ju, Bowen Zhu, Bohan Sang, Bo Liu, Jianjun Yu. [J]. Laser & Optoelectronics Progress, 2023, 60(7): 0736002
    Download Citation