• Matter and Radiation at Extremes
  • Vol. 5, Issue 6, 064201 (2020)
F. B. Rosmej1、2、3、4、a), V. A. Astapenko3, V. S. Lisitsa3、4、5, and L. A. Vainshtein6
Author Affiliations
  • 1Sorbonne University, Faculty of Science and Engineering, UMR 7605, Case 128, 4 Place Jussieu, F-75252 Paris Cedex 05, France
  • 2LULI, Ecole Polytechnique, CNRS-CEA, Physique Atomique dans les Plasmas Denses (PAPD), Route de Saclay, F-91128 Palaiseau Cedex, France
  • 3Moscow Institute of Physics and Technology MIPT (National Research University), Dolgoprudnyi 141700, Russia
  • 4National Research Nuclear University—MEPhI, Department of Plasma Physics, Moscow 115409, Russia
  • 5National Research Center “Kurchatov Institute”, Moscow, Russia
  • 6P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russia
  • show less
    DOI: 10.1063/5.0014158 Cite this Article
    F. B. Rosmej, V. A. Astapenko, V. S. Lisitsa, L. A. Vainshtein. Dielectronic recombination in non-LTE plasmas[J]. Matter and Radiation at Extremes, 2020, 5(6): 064201 Copy Citation Text show less
    References

    [1] H. R. Griem. Principles of Plasma Spectroscopy(1997).

    [2] F. B. Rosmej, V. S. Lisitsa, V. A. Astapenko. Plasma Atomic Physics(2020).

    [3] A. Burgess, A. Burgess. Dielectronic recombination and the temperature of the solar corona. Astrophys. J., 141, 776(1965).

    [4] A. H. Gabriel. Dielectronic satellite spectra for highly-charge helium-like ion lines. Mon. Not. R. Astron. Soc., 160, 99(1972).

    [5] E. A. Yukov, V. A. Vinogradov, I. Yu. Skobelev. Effect of collisions on the intensities of the dielectronic satellites of resonance lines of hydrogenlike ions. Sov. Phys. JETP, 45, 925(1977).

    [6] V. L. Jacobs, M. Blaha. Effects of angular-momentum-changing collisions on dielectronic satellite spectra. Phys. Rev. A, 21, 525(1980).

    [7] J. Abdallah, F. B. Rosmej. Blue satellite structure near Heα and Heβ and redistribution of level populations. Phys. Lett. A, 245, 548(1998).

    [8] L. A. Woltz, V. L. Jacobs, C. F. Hooper. Effects of electric microfields on argon dielectronic satellite spectra in laser-produced plasmas. Phys. Rev. A, 44, 1281(1991).

    [9] F. B. Rosmej, A. Calisti, E. Galtier et al. Interference effects and Stark broadening in XUV intra-shell transitions in aluminum under conditions of intense XUV free electron laser irradiation. Phys. Rev. A, 87, 033422(2013).

    [10] F. B. Rosmej. Hot electron x-ray diagnostics. J. Phys. B: At., Mol. Opt. Phys., 30, L819(1997).

    [11] R. W. Lee, S. H. Glenzer, F. B. Rosmej. Measurements of suprathermal electrons in hohlraum plasmas with x-ray spectroscopy. Phys. Rev. Lett., 81, 365(1998).

    [12] A. Colaitis, M. Smid, O. Renner et al. Characterization of suprathermal electrons inside a laser accelerated plasma via highly-resolved Kα emission. Nat. Commun., 10, 4212(2019).

    [13] F. B. Rosmej, E. Galtier, D. Riley et al. Decay of crystaline order and equilibration during solid-to-plasma transition induced by 20-fs microfocused 92 eV free electron laser pulses. Phys. Rev. Lett., 106, 164801(2011).

    [14] R. W. Lee, F. B. Rosmej. Hollow ion emission driven by pulsed x-ray radiation fields. Europhys. Lett., 77, 24001(2007).

    [15] A. Y. Faenov, J. Abdallah, J. Colgan et al. Exotic dense-matter states pumped by a relativistic laser plasma in the radiation-dominated regime. Phys. Rev. Lett., 110, 125001(2013).

    [16] H. R. Griem, R. C. Elton, F. B. Rosmej et al. Investigation of charge exchange induced formation of two electron satellite transitions in dense laser produced plasmas. Phys. Rev. E, 66, 056402(2002).

    [17] R. Schott, F. B. Rosmej, V. S. Lisitsa. Charge exchange driven X-ray emission from highly ionized plasma jets. Europhys. Lett., 76, 815(2006).

    [18] V. S. Lisitsa, F. B. Rosmej. A self-consistent method for the determination of neutral density from X-ray impurity spectra. Phys. Lett. A, 244, 401(1998).

    [19] V. S. Lisitsa, F. B. Rosmej, D. Reiter. Influence of charge exchange processes on X-ray spectra in TEXTOR tokamak plasmas: Experimental and theoretical investigation. Plasma Phys. Controlled Fusion, 41, 191(1999).

    [20] F. B. Rosmej, V. S. Lisitsa. Non-equilibrium radiative properties in fluctuating plasmas. Plasma Phys. Rep., 37, 521(2011).

    [21] F. B. Rosmej, A. Y. Faenov. New innershell phenomena from Rydberg series of highly charged ions. Phys. Scr., T73, 106(1997).

    [22] T. A. Pikuz, A. Y. Faenov, F. B. Rosmej. Inner-shell satellite transitions in dense short pulse plasmas. J. Quant. Spectrosc. Radiat. Transfer, 58, 859(1997).

    [23] F. B. Rosmej, T. A. Pikuz, A. Y. Faenov. Line formation of high intensity Heβ-Rydberg dielectronic satellites 1s3lnl′ in laser produced plasmas. J. Phys. B: At., Mol. Opt. Phys., 31, L921(1998).

    [24] O. Renner, E. Krouský, F. B. Rosmej. Observation of H-like Al Lyα disappearance in dense cold laser produced plasmas. Appl. Phys. Lett., 79, 177(2001).

    [25] B. Deschaud, O. Peyrusse, F. B. Rosmej. Simulation of XFEL induced fluorescence spectra of hollow ions and studies of dense plasma effects. Phys. Plasmas, 27, 063303(2020).

    [26] I. I. Sobelman, L. A. Vainshtein. Excitation of Atomic Spectra(2006).

    [27] R. Florido, C. Bowen, J. G. Rubiano. Review of the 4th NLTE code comparison workshop. High Energy Density Phys., 3, 225(2007).

    [28] C. Bowen, C. J. Fontes, H.-K. Chung. Comparison and analysis of collisional-radiative models at the NLTE-7 workshop. High Energy Density Phys., 9, 645(2013).

    [29] H. Zhang, J. Colgan, C. F. Fontes. Collisional-radiative modeling of tungsten at temperatures of 1200–2400 eV. Atoms, 3, 76(2015).

    [30] A. Sommerfeld. Atombau und Spektrallinien(1978).

    [31] V. I. Kogan, V. S. Lisitsa, A. B. Kukushkin. Kramers electrodynamics and electron-atomic radiative collisional processes. Phys. Rep., 213, 1(1992).

    [32] R. D. Cowan. The Theory of Atomic Structure and Spectra(1981).

    [33] G. W. F. Drake. Handbook of Atomic, Molecular, and Optical Physics(2006).

    [34] S. N. Nahar, A. Pradhan. Atomic Astrophysics and Spectroscopy(2011).

    [35] V. A. Astapenko. Polarization Bremsstrahlung on Atoms, Plasmas, Nanostructures and Solids(2013).

    [36] L. A. Vainshtein, U. I. Safronova. Wavelengths and transition probabilities of satellites to resonance lines of H- and He-like ions. At. Data Nucl. Data Tables, 21, 49(1978).

    [37] L. A. Vainshtein, A. M. Urnov, F. F. Goryaev. Atomic data for doubly-excited states 2lnl′ of He-like and 1s2lnl′ of Li-like ions with Z=6-36 and n=2,3. At. Data Nucl. Data Tables, 113, 117(2017).

    [38] B. N. Chichkov, L. A. Vainshtein, I. L. Beigman. Dielectronic recombination. J. Exp. Theor. Phys., 53, 490(1981).

    [39] V. S. Lisitsa. Atoms in Plasmas(1994).

    [40] V. S. Lisitsa, D. S. Leontyev. Statistical model of dielectronic recombination of heavy ions in plasmas. Contrib. Plasma Phys., 56, 846(2016).

    [41] A. V. Demura, D. S. Leont’iev, V. S. Lisitsa. Statistical dielectronic recombination rates for multielectron ions in plasma. J. Exp. Theor. Phys., 125, 663(2017).

    [42] V. P. Shevelko, L. A. Vainshtein. Atomic Physics for Hot Plasmas(1993).

    [43] V. P. Shevelko, L. A. Vainshtein(1996).

    [44] L. A. Vainshtein. Proc. P. N. Lebedev Inst., 119, 3(1980).

    [45] F. Petitdemange, F. B. Rosmej, M. Mohan. Dielectronic satellites and Auger electron heating: Irradiation of solids by intense XUV-free electron laser radiation. New Trends in Atomic & Molecular Physics: Advanced Technological Applications, 91-114(2013).

    [46] F. B. Rosmej. Diagnostic properties of Be-like and Li-like satellites in dense transient plasmas under the action of highly energetic electrons. J. Quant. Spectrosc. Radiat. Transfer, 51, 319(1994).

    [47] F. B. Rosmej. A new type of analytical model for complex radiation emission of hollow ions in fusion and laser produced plasmas. Europhys. Lett., 55, 472(2001).

    [48] F. B. Rosmej. An alternative method to determine atomic radiation. Europhys. Lett., 76, 1081(2006).

    [49] F. B. Rosmej, Y. Zou, R. Hutton. X-ray emission spectroscopy and diagnostics of non-equilibrium fusion and laser produced plasmas. Highly Charged Ion Spectroscopic Research, 267-341(2012).

    [50] F. B. Rosmej, X. Li, V. A. Astapenko. An analytical plasma screening potential based on the self-consistent-field ion-sphere model. Phys. Plasmas, 26, 033301(2019).

    [51] F. B. Rosmej, X. Li. Analytical approach to level delocalization and line shifts in finite temperature dense plasmas. Phys. Lett. A, 384, 126478(2020).

    [52] H. A. Bethe, E. E. Salpeter, J. D. Hey. On the role of atomic metastability in the production of Balmer line radiation from cold atomic hydrogen, deuterium and hydrogenic ion impurities in fusion edge plasmas. J. Phys. B: At., Mol. Opt. Phys., 45, 065701(2012).

    [53] V. L. Jacobs, J. Davis. Effects of plasma microfields on radiative transitions from atomic levels above the ionization threshold. Phys. Rev. A, 12, 2017(1975).

    [54] V. L. Jacobs, J. Davis, P. C. Kepple. Enhancement of dielectronic recombination by plasma electric microfields. Phys. Rev. Lett., 37, 1390(1976).

    [55] V. L. Jacobs, J. Davis. Properties of Rydberg autoionizing states in electric field. Phys. Rev. A, 19, 776(1979).

    [56] N. C. Pyper, M. F. Gu, I. P. Grant. Breit interaction in multi-configuration relativistic atomic calculations. J. Phys. B: A., Mol. Phys., 9, 761(1976).

    [57] L. A. Bureyeva, T. Kato, V. S. Lisitsa. Quasiclassical representation of autoionization decay reates in parabolic coordinates. J. Phys. B: At., Mol. Opt. Phys., 34, 3909(2001).

    [58] V. S. Lisitsa, L. A. Bureyeva, T. Kato et al. Quasiclassical theory of dielectronic recombination in plasmas. Phys. Rev. A, 65, 032702(2002).

    [59] F. Robicheaux, M. S. Pindzola, J. D. Hey, J. D. Hey. On the use of the axially symmetric paraboloidal coordinate system in deriving some properties of Stark states of hydrogenic atomc and ions. J. Phys. A: Math. Theor., 52, 045203(2019).

    [60] P. Gombas. Erweiterung der statistischen theroy des atoms. Z. Phys., 121, 523(1943).

    [61] P. Gombas. Die statistische theorie des Atoms und ihre Anwendungen(1949).

    [62] P. Gombás. Present state of the statistical theory of atoms. Rev. Mod. Phys., 35, 512(1963).

    [63] G. Maynard, C. Deutsch, P. Fromy. Thomas-Fermi-like and average atom models for dense and hot matter. Phys. Plasmas, 3, 714(1996).

    [64] E. H. Lieb, B. Simon. The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math., 23, 22(1977).

    [65] S. Nordholm, G. Kemister. A radially restricted Thomas-Fermi theory for atoms. J. Chem. Phys., 76, 5043(1982).

    [66] M. B. Kadomtsev, A. V. Demura, V. S. Lisitsa. Universal statistical approach to radiative and collisional processes with multielectron ions in plasmas. High Energy Density Phys., 15, 49(2015).

    [67] A. Sommerfeld. Integrazione asintotica dell’equazione differentiale di Thomas–Fermi. Rend. R. Accad. Lincei, 15, 293(1932).

    [68] B. A. Trubnikov, V. D. Kirillow, S. A. Trushin. Role of impurities in anomalous plasma resistance. Sov. J. Plasma Phys., 1, 117(1975).

    [69] S. D. Loch, C. P. Balance, M. S. Pindzola et al. Dielectronic recombination of W35+. J. Phys. B: At., Mol. Opt. Phys., 43, 205201(2010).

    [70] X. Ma, Y. Fu, Z. Wu. Electronic impact excitation and dielectronic recombination of highly charged tungsten ions. Atoms, 3, 474(2015).

    [71] E. Behar, P. Mandelbaum, J. L. Schwob. Dielectronic recombination rate coefficients for highly-ionized Ni-like atoms. Phys. Rev. A, 54, 3070(1996).

    F. B. Rosmej, V. A. Astapenko, V. S. Lisitsa, L. A. Vainshtein. Dielectronic recombination in non-LTE plasmas[J]. Matter and Radiation at Extremes, 2020, 5(6): 064201
    Download Citation