• Laser & Optoelectronics Progress
  • Vol. 55, Issue 8, 82802 (2018)
Tian Maoyi1, Wang Yancun1, Yu Jiayong1, He Yan2, Cao Yuefei1、3, Lü Deliang4, Hu Shanjiang2, Yang Zhong5, Zhu Xia5, and Shi Xiangao5
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • 5[in Chinese]
  • show less
    DOI: 10.3788/lop55.082802 Cite this Article Set citation alerts
    Tian Maoyi, Wang Yancun, Yu Jiayong, He Yan, Cao Yuefei, Lü Deliang, Hu Shanjiang, Yang Zhong, Zhu Xia, Shi Xiangao. Study on the Data Registration Method of Airborne Bathymetric LiDAR System and Ship-Based Mobile Measurement System[J]. Laser & Optoelectronics Progress, 2018, 55(8): 82802 Copy Citation Text show less
    References

    [1] Zhao J H, Ouyang Y Z, Wang A X. Status and development tendency for seafloor terrain measurement technology[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1786-1794.

    [2] Steinvall O K, Koppari K R, Karlsson U C M. Airborne laser depth sounding: system aspects and performance[J]. Proceedings of SPIE, 1994, 2558: 392-412.

    [3] Gaba S P. Underwater ranging[J]. Defence Science Journal, 2014, 34(1): 71-78.

    [4] He Y, Tian M Y, Lü D L, et al. Parameter design and performance analysis of airborne dual frequency laser radar system[C]∥Infrared and Remote Sensing Technology and Applications and Interdisciplinary Forum, Nanjing, Jiangsu, 2015: 183-192.

    [5] Hu Y H, Min H, Zhao N X. Airborne and spaceborne laser sounding technology and applications[J]. Proceedings of SPIE, 2009, 7382: 73820A.

    [6] Huang M T, Zhai G J, Xie X J, et al. The influence of carrier′s attitude and the position reduction in multibeam echosounding and airborne laser depth sounding[J]. Acta Geodaetica et Cartographica Sinica, 2000, 2(3): 77-88.

    [7] Hu S J, He Y, Zang H G, et al. A new airborne laser bathymetry system and survey result[J]. Chinese Journal of Lasers, 2006, 33(9):1163-1167.

    [8] Ren L P, Zhao J S, Zhai G J, et al. Scanning-track computation and analysis for airborne laser depth sounding[J]. Geomatics and Information Science of Wuhan University, 2002, 27(2): 138-142.

    [9] Fan M, Sun Y, Xing Z, et al. Bathymetry fusion techniques for high-resolution digital bathymetric modeling[J]. Haiyang Xuebao, 2017, 39(1): 130-137.

    [10] Yang F L, Wu Z Y, Du Z X, et al. Co-registering and fusion of digital information of multi-beam sonar and side-scan sonar[J]. Geomatics and Information Science of Wuhan University, 2006, 31(8): 740-743.

    [11] Liu J N, Zhao J H. The present status and developing trend of the multibeam system[J]. Hydroaphic Surveying and Charting, 2002, 22(5): 3-6.

    [12] Costa B M, Battista T A, Pittman S J. Comparative evaluation of airborne LiDAR and ship-based multibeam SoNAR bathymetry and intensity for mapping coral reef ecosystems[J]. Remote Sensing of Environment, 2009, 113(5): 1082-1100.

    [13] Gall B L, Authemayou C, Ehrhold A, et al. LiDAR offshore structural mapping and U/Pb zircon/monazite dating of Variscan strain in the Leon metamorphic domain, NW Brittany[J]. Tectonophysics, 2014, 630: 236-250.

    [14] Kennedy D M, Ierodiaconou D, Schimel A. Granitic coastal geomorphology: applying integrated terrestrial and bathymetric LiDAR with multibeam sonar to examine coastal landscape evolution[J]. Earth Surface Processes and Landforms, 2014, 39(12): 1663-1674.

    [15] Schmauder G C, Kent G, Smith K D, et al. Reexamination of faulting in the Tahoe Basin using airborne LiDAR data and seismic CHIRP imagery[C]∥Fall Meeting of American Geophysical Union, 2011: S12A-05.

    [16] Kaneko S, Kondo T, Miyamoto A. Robust matching of 3D contours using iterative closest point algorithm improved by M-estimation[J]. Pattern Recognition, 2003, 36(9): 2041-2047.

    [17] Minguez J, Montesano L, Lamiraux F. Metric-based iterative closest point scan matching for sensor displacement estimation[J]. IEEE Transactions on Robotics, 2006, 22(5): 1047-1054.

    [18] Zhu J, Du S, Yuan Z, et al. Robust affine iterative closest point algorithm with bidirectional distance[J]. IET Computer Vision, 2012, 6(3): 252-261.

    [19] Zeng F X, Li L, Diao X P. Iterative closest point algorithm registration based on curvature features[J]. Laser & Optoelectronics Progress, 2017, 54(1): 011003.

    [20] Zhu J H, Zheng N N, Yuan Z J, et al. Robust scaling iterative closest point algorithm with bidirectional distance measurement[J]. Electronics Letters, 2010, 46(24): 1604-1605.

    [21] Du S Y, Zhu J H, Zheng N N, et al. Robust iterative closest point algorithm for registration of point sets with outliers[J]. Optical Engineering, 2011, 50(8): 087001.

    [22] Zhang Z, Xu H L, Yin H. A fast point cloud registration algorithm based on key point selection[J]. Laser & Optoelectronics Progress, 2017, 54(12): 121002.

    [23] Li R Z, Yang M, Tian Y, et al. Point cloud registration algorithm based on the ISS feature points combined with improved ICP algorithm[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111503.

    [24] Peng K, Chen X, Zhou D, et al. 3-D reconstruction using image sequences based on projective depth and simplified iterative closest point[J]. Optical Engineering, 2012, 51(2): 021110.

    Tian Maoyi, Wang Yancun, Yu Jiayong, He Yan, Cao Yuefei, Lü Deliang, Hu Shanjiang, Yang Zhong, Zhu Xia, Shi Xiangao. Study on the Data Registration Method of Airborne Bathymetric LiDAR System and Ship-Based Mobile Measurement System[J]. Laser & Optoelectronics Progress, 2018, 55(8): 82802
    Download Citation