• Photonics Research
  • Vol. 12, Issue 4, 774 (2024)
Lihong Hong1、†,*, Yuanyuan Liu2、†, and Zhi-Yuan Li2
Author Affiliations
  • 1State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
  • show less
    DOI: 10.1364/PRJ.516105 Cite this Article Set citation alerts
    Lihong Hong, Yuanyuan Liu, Zhi-Yuan Li. Synergic action of linear dispersion, second-order nonlinearity, and third-order nonlinearity in shaping the spectral profile of a femtosecond pulse transporting in a lithium niobate crystal[J]. Photonics Research, 2024, 12(4): 774 Copy Citation Text show less
    References

    [1] A. V. Buryak, P. D. Trapani, D. V. Skryabin. Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications. Phys. Rep., 370, 63-235(2002).

    [2] F. Leo, I. Ricciardi, M. D. Rosa. Walk-off-induced modulation instability, temporal pattern formation, and frequency comb generation in cavity-enhanced second-harmonic generation. Phys. Rev. Lett., 116, 033901(2016).

    [3] R. Šumina, G. Tamošauskas, G. Valiulis. Spatiotemporal light bullets and supercontinuum generation in β-BBO crystal with competing quadratic and cubic nonlinearities. Opt. Lett., 41, 2097-2100(2016).

    [4] F. Baronio, M. Conforti, C. D. Angelis. Second and third order susceptibilities mixing for supercontinuum generation and shaping. Opt. Fiber Technol., 18, 283-289(2012).

    [5] R. R. Alfano, S. L. Shapiro. Emission in the region 4000 to 7000 via four-photon coupling in glass. Phys. Rev. Lett., 24, 584-587(1970).

    [6] F. Shimizu. Frequency broadening in liquids by a short light pulse. Phys. Rev. Lett., 19, 1097-1100(1967).

    [7] G. P. Agrawal. Nonlinear Fiber Optics(2013).

    [8] J. M. Dudley, G. Genty, S. Coen. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys., 78, 1135-1184(2006).

    [9] A. L. Gaeta. Nonlinear propagation and continuum generation in microstructured optical fibers. Opt. Lett., 27, 924-926(2002).

    [10] C. R. Petersen, U. Møller, I. Kubat. Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat. Photonics, 8, 830-834(2014).

    [11] Y. Yu, X. Gai, P. Ma. A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide. Laser Photonics Rev., 8, 792-798(2014).

    [12] Y. Okawachi, M. Yu, B. Desiatov. Chip-based self-referencing using integrated lithium niobate waveguides. Optica, 7, 702-707(2020).

    [13] H. Guo, C. Herkommer, A. Billat. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides. Nat. Photonics, 12, 330-335(2018).

    [14] B. Q. Chen, M. L. Ren, R. J. Liu. Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals. Light Sci. Appl., 3, e189(2014).

    [15] B. Q. Chen, C. Zhang, C. Y. Hu. High-efficiency broadband high-harmonic generation from a single quasi phase-matching nonlinear crystal. Phys. Rev. Lett., 115, 08392(2015).

    [16] L. H. Hong, C. Y. Hu, Y. Y. Liu. 350–2500 nm supercontinuum white laser enabled by synergic high-harmonic generation and self-phase modulation. PhotoniX, 4, 11(2023).

    [17] L. H. Hong, L. Q. Liu, Y. Y. Liu. Intense ultraviolent-visible-infrared full-spectrum laser. Light Sci. Appl., 12, 199(2023).

    [18] R. DeSalvo, D. J. Hagan, M. Sheik-Bahae. Self-focusing and self-defocusing by cascaded second-order effects in KTP. Opt. Lett., 17, 28-30(1992).

    [19] A. Roy, R. Nehra, S. Jahani. Temporal walk-off induced dissipative quadratic solitons. Nat. Photonics, 16, 162-168(2022).

    [20] G. Moille, E. F. Perez, J. R. Stone. Ultra-broadband Kerr microcomb through soliton spectral translation. Nat. Commun., 12, 7275(2021).

    [21] I. Ricciardi, S. Mosca, M. Parisi. Frequency comb generation in quadratic nonlinear media. Phys. Rev. A, 91, 063839(2015).

    [22] N. Hoghooghi, S. Xing, P. Chang. Broadband 1-GHz mid-infrared frequency comb. Light Sci. Appl., 11, 264(2022).

    [23] M. Jankowski, C. Langrock, B. Desiatov. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica, 7, 40-46(2020).

    [24] L. H. Hong, B. Q. Chen, C. Y. Hu. Ultrabroadband nonlinear Raman–Nath diffraction against femtosecond pulse laser. Photonics Res., 10, 905-915(2022).

    [25] L. H. Hong, B. Q. Chen, C. Y. Hu. Rainbow Cherenkov second-harmonic radiation. Phys. Rev. Appl., 18, 044063(2022).

    [26] S. M. Saltiel, A. A. Sukhorukov, Y. S. Kivshar. Multistep parametric processes in nonlinear optics. Prog. Opt., 47, 1-73(2003).

    [27] C. Finot, F. Chaussard, S. Boscolo. Simple guidelines to predict self-phase modulation patterns. J. Opt. Soc. Am. B, 35, 3143-3152(2018).

    [28] C. Y. Hu, Z. Y. Li. An effective nonlinear susceptibility model for general three-wave mixing in quasi-phase-matching structure. J. Appl. Phys., 121, 123110(2017).

    [29] L. H. Hong, B. Q. Chen, C. Y. Hu. Spatial-temporal evolution of ultrashort laser pulse second harmonic generation in β-barium borate (β-BBO) crystal. J. Appl. Phys., 129, 233102(2021).

    Lihong Hong, Yuanyuan Liu, Zhi-Yuan Li. Synergic action of linear dispersion, second-order nonlinearity, and third-order nonlinearity in shaping the spectral profile of a femtosecond pulse transporting in a lithium niobate crystal[J]. Photonics Research, 2024, 12(4): 774
    Download Citation