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We present a detailed theoretical and numerical analysis on the temporal-spectral-spatial evolution of a high-
peak-power femtosecond laser pulse in two sets of systems: a pure lithium niobate (LN) plate and a periodically
poled lithium niobate (PPLN) plate. We develop a modified unidimensional pulse propagation model that con-
siders all the prominent linear and nonlinear processes and carried out the simulation process based on an im-
proved split-step Fourier transformation method. We theoretically analyze the synergic action of the linear
dispersion effect, the second-order nonlinearity (2nd-NL) second-harmonic generation (SHG) effect, and the
third-order nonlinearity (3rd-NL) self-phase modulation (SPM) effect, and clarify the physical mechanism under-
lying the peculiar and diverse spectral broadening patterns previously reported in LN and PPLN thin plate ex-
periments. Such analysis and discussion provides a deeper insight into the synergetic contribution of these
linear and nonlinear effects brought about by the interaction of a femtosecond laser pulse with the LN nonlinear
crystal and helps to draw a picture to fully understand these fruitful optical physical processes, phenomena, and
laws. © 2024 Chinese Laser Press

https://doi.org/10.1364/PRJ.516105

1. INTRODUCTION

Ultrashort pulses with large pulse energy can excite strong sec-
ond-order nonlinearity (2nd-NL) and third-order nonlinearity
(3rd-NL) effects of nonlinear crystals, which can realize simul-
taneous fast modulation in the spatial, temporal, and spectral
domains synergically for laser pulses together with its linear
dispersion property [1–4]. Spectral supercontinuum (SC) gen-
eration can be realized in bulk materials [5,6], optical fibers
[7–10], and waveguides [11,12] using the well-known self-
phase modulation (SPM) effect induced by the 3rd-NL of
materials. However, the 3rd-NL is inherently weak compared
to the 2nd-NL. It requires high pump energy to stimulate the
3rd-NL in optical materials, but results in a limited bandwidth
of the generated SC due to the energy damage threshold of
these materials. Specific dispersion-controlling structures can
be designed to realize broadband SC generation by using a
pump wave of lower peak energy in fibers and waveguides.
This method usually would acquire an SC with low flatness

in the spectral profile, as it depends on the accompanied gen-
eration of dispersive waves or stimulated Raman waves with
sharp rises [13].

These drawbacks in low spectral intensity and low spectral
flatness of the generated SC via the 3rd-NL can be improved by
making use of the strong 2nd-NL to implement high-efficiency
frequency conversions, such as second-harmonic generation
(SHG), sum-frequency generation (SFG), difference-frequency
generation (DFG), and the high-harmonic generation (HHG)
process [14–20], which is a widely used technique to extend the
existing SC pump source or SC frequency comb to new spectral
regions [21,22]. With the help of quasi-phase-matching
(QPM) technology, noncentrosymmetric crystals such as lith-
ium tantalate (LST) and lithium niobate (LN), can be designed
into periodically poled lithium tantalate (PPLST) and periodi-
cally poled lithium niobate (PPLN) crystals [23–26] that
manifest both excellent 2nd-NL and 3rd-NL performances.
These materials can be further designed into chirped PPLN
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(CPPLN) crystals that exhibit multiple controllable reciprocal
lattice bands to simultaneously support broadband 2nd–10th
HHG via a series of cascaded SHG and SFG processes driven
by the 2nd-NL interactions [14]. Furthermore, these crystals
can fully utilize both the 2nd-NL and 3rd-NL of the material
under the pump of a high pulse energy laser, thus providing an
excellent platform to study the synergic actions of nonlinearities
and giving rise to the most favorable route for realizing a full-
spectrum laser source covering the ultraviolet-visible-infrared
(UV-Vis-IR) region [16,17].

We have reported in our previous experimental studies on
LN thin plates [24] that an effective spectral broadening of a
high-energy near-infrared (NIR) pump can be achieved within
a 1 mm transmission length [Fig. 1(a)]. We have also reported
the ultra-broadband nonlinear Raman–Nath diffraction [24]
and rainbow Cherenkov radiation of the second harmonic wave
(SHW) [25] generated in a PPLN thin plate [Fig. 1(b)].
Remarkably, we have noticed that the pump spectra exhibit
extremely different broadening patterns in the pure LN crystal
and the PPLN crystal of the same size [see the comparison be-
tween Figs. 1(c) and 1(d)]. However, the underlying physical
mechanisms driving these peculiar spectral broadening profiles
were not fully understood at that time.

In this work, we develop a unidirectional pulse propagation
model to describe the synergic broadening mechanism involv-
ing linear dispersion, the nonlinear 2nd-NL SHG process, and
the 3rd-NL SPM process. We apply this model to calculate the
temporal spectral evolution process in a pure LN thin plate and
a PPLN thin plate, aiming to elucidate the individual contri-
butions of linearity and nonlinearity to the overall broadening
effect. We not only hope to fully understand and interpret the
peculiar and diverse spectral broadening profile features illus-
trated in Fig. 1, but also wish to draw a clear physical picture
of these synergic mechanisms that naturally occur in bulk ma-
terials under the excitation of a femtosecond laser with a large
pump pulse energy and high peak power.

2. MODEL AND EQUATIONS USED TO
DESCRIBE THE SYNERGIC LINEAR
DISPERSION EFFECT, AND 2ND-NL AND
3RD-NL EFFECTS

The spectral broadening illustrations for crystals with a single
3rd-NL, a single 2nd-NL, and a synergic two-NL are shown
in Fig. 2. Figure 2(a) indicates the 3rd-NL spectral broadening
induced by the SPM effect, which can generate new frequency
components around the pump frequency ω0. Figure 2(b) indi-
cates the 2nd-NL extending as a result of the SHG process and
generating a narrowband SHW. If 2nd-NL and 3rd-NL both
exist, they would work synergically to form an SC spectrum con-
sisting of a broadband fundamental wave (FW) and a broadband
SHW. Although the linear dispersion effect itself has no impact
on the broadening mechanism and is out of the illustration scope
shown in Fig. 2, it can cause temporal intrapulse variations that
can largely impact the evolution process of FW and SHW as well
as the interaction between them; therefore, it also plays a crucial
role along with these nonlinear actions.

In many traditional simulations for the SC generation pro-
cess, the spectral and temporal profiles of the pulses are often
calculated by considering the linear dispersion along with the
3rd-NL effects, which provide a solid theoretical foundation to
elucidate various 3rd-NL phenomena, including the generation
of dispersive waves and the self-frequency shift of solitons
[7,8,27]. These are all self-action effects that focus solely on
how the time-frequency profile of the pulse itself at the previous
moment affects its subsequent evolution. However, 2nd-NL
effects such as the SHG process [28,29] involve the coupled
interaction between two pulses, FW and SHW; thus, it be-
comes imperative to consider their interactions when simulat-
ing the femtosecond pulse transport in materials with synergic
2nd-NL and 3rd-NL effects.

Therefore, we come up with a more accurate unidimen-
sional pulse propagation model that clearly describes the
2nd-NL coupling mechanism along with the linear dispersion
and the 3rd-NL effect. Our modified model can be described in
the following scalar form:

Fig. 1. Experiment setup and results in our previous studies [25]. The NIR femtosecond laser is coupled into the x-y surface of (a) a pure LN thin
plate sample with dimensions of 5 mm �x� × 20 mm �y� × 1 mm (z), and (b) a z cut PPLN crystal of the same size with poling period of 6.96 μm.
(c) and (d) The input pump and output broadened spectra experimentally recorded in systems (a) and (b), respectively.
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Here, I i�z,ωi� �
R
dtI i�z, ti�eiωi t i � R

dtjEi�z, ti�j2eiωi t i .
P�1�
i �z, t i� includes the full dispersion dynamics of the ultra-

short input pulse directly calculated from the refractive index
of the material. P�2�

i �z, ti� includes the 2nd-NL SHG process
described by the well-known coupled wave equations, and
P�3�
i �z, t i� includes the classic theory for the SPM effect that

denotes 3rd-NL spectral broadening. More specifically, the ef-
fective nonlinear optical coefficient d eff and nonlinear refractive

index n2 can be deduced from the second-order and third-order
polarization tensor χ�2� and χ�3�. The simulation parameters of
pure LN and PPLN crystal used in this passage are 27.2 pm/V
and 1.9 × 10−19 m2∕W, respectively. According to the material
dispersion of the pure LN and PPLN crystal, the zero-
dispersion wavelength locates at about 1920 nm, so here we
discuss the spectral broadening effect of the FW and the
SHW in the normal dispersion region.

This new unidimensional pulse propagation model is solved
and calculated by the split-step Fourier transformation method
simultaneously considering the dispersion, and SHG and SPM
effects in sequence within each step length. First of all, the
dispersion and SHG are calculated in the frequency domain,
with the SHG process solved by the fourth-order Runge–
Kutta method. Then we use Fourier transformation to calculate
the temporal changes induced by the SPM effect. The final step
is to take the inverse Fourier transformation back to the fre-
quency domain and get prepared for the next loop.

In our simulation, two sets of time-frequency grids are used
to describe the time-frequency evolution process of FW and
SHW, respectively. It is more comprehensive to classify the
considered effects into two categories: self-action effect
(dispersion and SPM) and coupled-action effect (SHG). The
former describes how the time-frequency distribution of the
pulse itself affects its overall evolution, while the latter charac-
terizes the interaction between these two sets of grids. The ad-
vantage of this grid setup lies in its capacity to intuitively tell the
researcher whether a certain special output phenomenon, if any,
results from the self-action of the pulse or from the interaction
between two pulses (FW and SHW). Here we use this meth-
odology to carry out an accurate theoretical analysis of the time-
frequency profile of the FW and SHW under the experimental
conditions provided in Ref. [25], and systematically examine
their spectral evolution as well as their spectral pattern varia-
tions under different pump energies.

Our experimental results shown in Figs. 1(c) and 1(d) illus-
trate the pump broadening observed in a pure LN crystal and in
a PPLN crystal, respectively. In this passage, we focus mostly on
the different broadening patterns of the FW and the underlying
physical mechanisms. As for the SHG process in PPLN crystal,
the reported experiment results of the second-harmonic
Raman–Nath diffraction have multiple diffraction orders, en-
compassing a series of phase-matching processes along the do-
main direction [the y direction, as depicted in Fig. 1(b)]. This
would greatly govern the restriction on the energy flow and
phase-matching process between FW and SHW through the
domain periods along the y axis, resulting in a significant di-
vergence in the broadening patterns of FW observed between

Fig. 2. Spectral illustration for synergic 2nd-NL and 3rd-NL effects.
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the pure LN and PPLN systems. Moreover, we notice that the
strongest output energy of SHW appears in the direction col-
linear with that of the FW emission, achieving an SHG con-
version efficiency of approximately 6.67%. This outcome
suggests that a pronounced interaction takes place between
the FW and the SHW in this specific direction. Therefore,
in this passage we focus mostly on such a prominent spectral
broadening effect caused by the interplay of SPM and
dispersion of the FW and see how the SHG effect affects
the spectral broadening effect of the FW.

3. DISCUSSION FOR EXPERIMENT AND
SIMULATION RESULTS

A. Synergic Effect of Dispersion and SPM in Pure LN
System
First, we calculate the spectral broadening of FW in pure LN by
taking the self-action effects (linear dispersion and 3rd-NL
SPM) into account. The experiment and simulation results dis-
played in Fig. 3(a) are in good agreement. They both show two
asymmetric sidebands around the pump spectral components,
spanning 900–1250 nm and 1370–1750 nm, respectively. The
SPM effect considered in our simulation will only generate
symmetric frequencies around the central frequency without
causing temporal profile distortion. On the contrary, the linear
dispersion effect also considered in the simulation will only dis-
tort the temporal distribution rather than the spectral intensity
distribution of the output pulse. Therefore, the observed asym-
metric spectrum in Fig. 3(a) must be the result of the synergic
interaction of both effects in the time-frequency domain.

This feature can also be seen in Fig. 3(c), where the blue line
considering only the SPM effect results in symmetric sidebands
with equal intensity, while the red line considering both
dispersion and SPM has asymmetric energy distribution in the
spectrum evolution. At the transmission distance 0.2 mm, the
blue and red lines display a minimal difference in spectrum
broadening and both exhibit a single-peak structure in the fre-
quency domain. At 0.4 mm, a double-peak structure appears in
both cases, with the splitting point appearing at the central
wavelength of 1300 nm. The spectral peaks in the case of
SPM remain symmetric, while the combined influence of
the SPM and the dispersion results in an asymmetric energy
distribution, with more energy concentrated at the long wave
part. At 0.6 mm, the double-peak structure splits more signifi-
cantly in both cases, and the spectral width of the two peaks
also continuously increases. Moreover, the energy distribution
asymmetry in the case of SPM together with dispersion is fur-
ther amplified. At 0.8 and 1 mm, a triple-peak structure ap-
pears and, at this time, a spectral peak appears at the central
wavelength of 1300 nm, processing the narrowest bandwidth
compared to the bands on both sides. In addition, taking the
dispersion effect into consideration causes a shift in the position
of the spectral peaks and valleys, aligning them closer to the
central wavelength.

Aside from the spectral distribution of these two cases, we
also display their difference in a time-frequency profile in
Figs. 3(d) and 3(e), which reveals intrapulse frequency distri-
bution in variation with the transmission distance. The time-
frequency distribution can be deduced directly from the
calculated complex temporal electric field. After calculating the

Fig. 3. (a) Experiment and simulation results of the pump (black) and broadened spectrum (red) from pure LN. (b) Simulated spectrum evolution
during the pump femtosecond pulse transmitting 1 mm thick pure LN crystal with the action of the 3rd-NL effect along with linear dispersion. The
overall calculated (c) broadening spectra and (d) temporal-frequency distributions, and (e) energy hotspot distribution maps plotted in the temporal-
frequency configuration are provided in variation with the transmission distance under the synergic actions of the linear dispersion and 3rd-NL. The
blue lines shown in (c) and (d) are the calculation results considering single 3rd-NL effect in comparison.

Research Article Vol. 12, No. 4 / April 2024 / Photonics Research 777



temporal phase from the equation E�z, t� � E�0, t�eiϕNL�z, t�,
the frequency shift variation with time can be further calculated
by δω�t� � − ∂ϕNL�z, t�

∂t . The frequencies shown in Figs. 3(d) and
3(e) are normalized according to the maximum frequency
shift value ωmax resulting from the SPM effect at 1 mm in
the form of

ωnormalized �
ω − ω0

Δωmax

, (6)

where ω0 is the central frequency for FW, the maximum fre-
quency shift is defined as Δωmax � jω−

FW − ω0j �
jω�

FW − ω0j, and ω−
FW and ω�

FW correspond, respectively, to
the lowest and highest frequency components generated by the
SPM effect. Therefore, the ωnormalized of SPM ranges from
−1 to 1 corresponding to the wavelength range covering
959–2018 nm.

Due to the short transmission distance, the pulse widths of
both cases in Fig. 3(d) are maintained at around 50 fs. The
frequency shift over time is completely centrosymmetric in
the form of a sinusoidal distribution when considering only
the SPM effect, as can be seen in the blue line in Fig. 4(a),
with the highest and lowest frequency located at the leading
middle and trailing middle of the pulse, respectively. The fre-
quency shift induced by dispersion in this pure LN system has a
similar distribution, but in a linear form [see the pink line in

Fig. 4(a)]. Notice that the case considering the synergic action
of the dispersion and the 3rd-NL SPM to some extent can be
understood as a nonlinear superposition of the frequency shift
of these two effects. Therefore, it can be seen from the red line
in Fig. 3(d) that the highest frequency is located at a more lead-
ing position due to the superposition. Besides the difference in
the temporal distribution of high frequencies, the maximum
frequency shift of low frequencies is also different; particularly
at 1 mm the normalized cut-off low-frequency is −0.694, com-
pared to the value of −1 in the SPM-only circumstance. This is
also reflected in Fig. 3(c), where the red line exhibits a signifi-
cantly lower broadening speed at a long wavelength compared
to the blue line. The hotspot maps displayed in Fig. 3(e) high-
light the asymmetries in both the energy distribution and fre-
quency broadening mentioned above.

We also employ an interference model [27] here to explain
the peaks and valleys observed both in the experimental and the
simulated broadened spectra. As can be seen in Fig. 4(a), one
specific frequency ωi will appear at two moments, t1 and t2,
which results in the interference between two waves of different
phases ϕ�ωi, t1� and ϕ�ωi, t2� and different peak intensities
I�ωi , t1� and I�ωi, t2�, which can be written as

I�ωi� � I�ωi , t1� � I�ωi, t2�
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I�ωi, t1�I�ωi, t2�

p
cos�Δϕ�ωi� − Δϕmax�, (7)

Fig. 4. (a) Illustration for phase difference calculation in the interference model and the calculated temporal frequency shift considering the
dispersion, the SPM, and the dispersion + SPM, respectively, after a 1 mm transmission distance in the pure LN crystal. The hatched area represents
the value of Δϕmax and the orange regions represent the value for Δϕ�ωi�. (b) Calculated Δϕmax in variation with the transmission distance.
(c) Calculated phase difference in variation with δω, where the pink dotted lines represent destructive interference and the green dotted lines
represent constructive interference. The intersection points match the peaks and valleys in (d) the spectrum diagram plotted with normalized
frequency shifts, respectively.
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where Δϕ�ωi� � ϕ�ωi, t1� − ϕ�ωi, t2� is the total phase differ-
ence between moments t1 and t2 [illustrated by the orange area
in Fig. 4(a)]. Δϕmax is the largest phase difference that can be
used to quantitatively describe the spectral broadening degree.
One can find thatΔϕmax takes place at the frequency ω0, which
has the largest input peak energy intensity to induce the largest
SPM broadening; i.e., Δϕmax � Δϕ�ω0�, as illustrated by the
hatched area in Fig. 4(a). The parameter Δϕmax increases lin-
early with the transmission distance when only considering the
SPM effect [see the blue line in Fig. 4(b)]. After adding
dispersion, the growing rate of Δϕmax is initially faster and then
gradually decelerates. For both cases, the calculated Δϕmax

reaches 2.5π after transmitting 0.8 mm of the pure LN crystal,
which is the critical Δϕmax value for the three-peak structure
formation that is consistent with the results shown in Fig. 3(c).
According to Eq. (7), one can find that constructive interfer-
ence particularly appears when

Δϕ − Δϕmax � �2m� 1�π, (8)

and results in a valley in the spectrum diagram for each integer
variable m. Destructive interference appears when

Δϕ − Δϕmax � �2m�π (9)

and results in a peak in the spectrum diagram for each integer
variable m. The peaks and valleys predicted by the interference
model [see Fig. 4(c)] agree perfectly with the spectrum diagram
redrawn with frequency as its horizontal coordinate in
Fig. 4(d).

B. Synergic Effect of Dispersion, and SHG and SPM
Effects in a PPLN System
The reported experiment results of second-harmonic Raman–
Nath diffraction in a 1 mm PPLN thin plate show that the
output energy of SHW in the collinear direction is the strong-
est, achieving an SHG conversion efficiency of approximately
6.67%. This outcome suggests a pronounced interaction be-
tween the FW and the SHW in this specific direction. Here,
we also employ our unidirectional propagation model to sim-
ulate the collinear SHG process in a PPLN crystal together with
the dispersion and SPM effect. The simulated FW spectrum is
shown in comparison to the experiment result in Fig. 5(a).
They both depict a weakening of the two asymmetric sidebands
generated by the synergic effect of linear dispersion, 2nd-NL
SHG, and 3rd-NL SPM, with the left sideband almost disap-
pearing and the right sideband further extending to longer
wavelength. We emphasize that the total energy output of
FW in our simulations shown in Figs. 3(a) and 5(a) is different.
After considering the frequency conversion process in the SHG
process, about 7% of the FW energy has already transferred to
SHW in the PPLN crystal in our simulation, matching quite
well with the experimentally estimated conversion efficiency
of 6.67%.

The black line in Fig. 5(b) presents the SHW spectrum ob-
tained by only considering the collinear 2nd-NL SHG process,
which results in a narrow bandwidth of about 50 nm and cen-
tered at 650 nm. The calculated energy conversion efficiency
for this case is around 3%. It can be seen in Fig. 5(c) that the

Fig. 5. (a) Experimental and simulated spectrum profile for the input pump pulse and the broadened FW pulse transmitting after a 1 mm PPLN
thin plate. (b) Generated SHW spectrum profile considering the dispersion and the 2nd-NL SHG process (the black line), the synergic dispersion,
the 2nd-NL SHG, and the 3rd-NL SPM process (the red line), respectively. (c) SHW spectrum evolution in variation with the transmission distance
corresponding to the cases of the black line and red line in (b). (d) Calculated maximum phase shift for FW and SHW in variation with the
transmission distance. (e) Calculated δω�t� for SHW at different transmission distances.
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bandwidth of the SHW spectrum embodies a significant reduc-
tion in variation with the transmission distance. Upon intro-
ducing the SPM effect alongside the SHG process, the
output SHW spectrum covers 515–817 nm at −30 dB level
[see the red line shown in Fig. 5(b)] after a 1 mm length
PPLN crystal. Also, the energy conversion efficiency of SHW
increases from 3% to 7% due to the satisfaction of a broadband
phase-matching condition under the synergetic effect of SPM
and dispersion. Although the SPM broadening effect is consid-
ered for both FW and SHW, the SPM effect of SHW should be
relatively small due to the smaller pulse energy. Therefore,
the substantial broadening effect of SHW predominantly
arises from a broadband SHG process 2ω−

FW � ω−
SHW ,

2ω�
FW � ω�

SHW . Facilitated by the large input pulse energy,
the SPM effect can severely broaden FW fast enough to realize
a rapid and highly efficient SHG process before a temporal

walk-off. In our SHG calculations, the phase mismatch is
directly calculated by Δk � 2k1 − k2, which strictly governs
the spectral energy that can be transferred from FW to SHW.

In Fig. 5(d) we calculate and show the maximum phase shift
for FW and SHW under an experiment pump energy of 60 μJ.
Δϕmax of the SHW increases faster than that of FW, finally
reaching 3.1π, which exceeds the required maximum phase for
three-peak formation. Meanwhile, the final Δϕmax for FW is
2.3π, which aligns with the two-peak condition. We also cal-
culate the temporal frequency shift profile of SHW with the
results shown in Fig. 5(e) and notice that it has characteristics
similar to that of the SPM-induced δω�t� for FW shown in
Fig. 4(a). Also, the maximum phase shift calculated for SHW
reaches 3.1π, which even surpasses the SPM-induced maxi-
mum phase shift for the FW. This is a very intriguing but rea-
sonable phenomenon. Although the SPM effect of SHW itself

Fig. 6. Simulated spectra of FW and SHW under different pump energies: (a) 10 μJ, (b) 30 μJ, (c) 50 μJ, (d) 70 μJ, (e) 90 μJ, and (f ) 110 μJ.

780 Vol. 12, No. 4 / April 2024 / Photonics Research Research Article



is insufficient to generate such a large Δϕmax (i.e., such a large
frequency-shift amount representing intense broadening), we
can still depend on the 2nd-NL effect to realize an equally good
broadening of the spectrum as well as a similar control on the
temporal frequency shift profile. This suggests that the SHG
process not only can serve as a frequency conversion technique,
but also has rich potential in temporal phase control that can
emulate with a conventional 3rd-NL effect.

The generated spectra of SHW and FW in variation with
the input energy are also calculated, with the results shown
in Fig. 6. They all manifest the trend that the long wave part
of SHW experiences a higher conversion efficiency and con-
sumes more energy in the long wave part of FW. This is also
the conclusion we can get from the experimental FW spectra
shown in Figs. 3(a) and 5(a). Figure 7(a) shows how the SHW
energy varies with different input pump energies. When the
input pump energy is 10 μJ, the FW spectrum is slightly broad-
ened, resulting in phase-matching conditions only satisfied for a
rather narrow bandwidth centered at 650 nm in Fig. 6(a).
Meanwhile, the energy of the SHW accumulates almost lin-
early, as can be seen in the black line in Fig. 7. When the input
energy increases from 30 to 90 μJ, as can be seen in Figs. 6(b)–
6(e), the generated SHW gradually displays a two-peak struc-
ture with one peak almost fixed at 650 nm and the other peak
consistently red shifted from 693 to 730 nm. Meanwhile,
the FW broadening pattern is largely influenced. It also dis-
plays a similar two-peak structure with one almost fixed at
1300 nm and the other one consistently red shifted from
1392 to 1510 nm. The inflection points labeled for each curve
in Fig. 7 indicate the transmission distance where the double-
peak structure is first observed in the simulation. As the input
energy increases, these inflection points appear at a shorter

transmission distance, which means different phase-matching
processes are reaching their maximum conversion efficiency
at a faster rate. The corresponding curves shown in Fig. 7(a)
can be separated by the inflection points into single-peak,
double-peak, and triple-peak regions. When the input energy
reaches as high as 110 μJ, both the FW and the generated SHW
receive a stronger broadening effect and form a three-peak
structure, as illustrated in Fig. 6(f ).

The output broadening spectra of the FW and the SHW
above show that the long wave part of SHW experiences a
higher conversion efficiency and consumes more energy in
the long wave part of the FW. To further analyze this varying
trend, we calculate the phase-mismatch profile in the temporal-
frequency domain, as displayed in Figs. 7(b) and 7(c). This
phenomenon becomes pronounced after propagating 0.4 mm
within the 1 mm length PPLN crystal, which is evident from
the spectral evolution of the SHW in Fig. 5(c). The red lines
in Figs. 7(b) and 7(c) show the temporal wavelength distribu-
tion for FW and SHW at 0.4 mm under experiment condi-
tions, which can be defined as λ1�t − β1z� and λ2�t − β1z�;
β1 � v−1g1 , and vg1 denotes the group velocity of the FW. By
calculating their phase difference, we can obtain a temporal
phase-mismatch distribution Δk�λ1�t − β1z�, λ2�t − β1z��
[see the solid black line in Fig. 7(d)] that is responsible for the
subsequent SHG process. The dotted black line in Fig. 7(d)
represents the phase-matching condition Δk�λ1�t − β1z�,
λ2�t − β1z�� � 0, and its intersection points with the solid
black line correspond to two phase-matching points.
According to the wavelength distribution profiles provided in
Figs. 7(b) and 7(c), these two points represent Δk�1535 nm,
710 nm� � 0 and Δk�1125 nm, 600 nm� � 0, respectively.
The first point takes place at the long wave part of the FW

Fig. 7. (a) Simulated SHW energy as a function of the transmission distance with increasing pump energies. The dotted inflection points indicate
the generation of a new spectral peak. (b)–(d) Temporal-frequency illustration for phase-mismatch calculation after the pulse propagating 0.4 mm
within the 1 mm length PPLN crystal. The red lines in (b) and (c) indicate the SPM-induced intrapulse wavelength distribution. The SHW pulse is
plotted in the reference frame moving with the group velocity of the FW; thus, the 650 nm component in (c) temporally lags behind the 1300 nm
component in (b). The horizontal black dotted line in (d) represents the phase-matching condition Δk � 0, with the corresponding wavelengths of
FW and SHW shown in the blue and green dotted lines in (b) and (c).
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(1535 nm) with a rather high energy peak, which guarantees an
efficient energy conversion in the subsequent SHG process. In
the subsequent transmission process, the long wave energy of
the FW will be further consumed and converted into the long
wave part in the SHW. On the contrary, the second phase-
matching point takes place at the short wave part of the
FW (1125 nm) with a low peak energy; therefore, the conver-
sion efficiency of the corresponding SHG process is greatly re-
duced and the 585 nm component of the SHW is generated
with a low conversion efficiency. Our modified calculation for
the temporal phase mismatch of FW and SHW considers the
temporal intrapulse wavelength distribution induced by the
SPM and the dispersion effect, which is beyond the scope
of conventional SHG calculations. This method allows for a
more accurate estimation of the matched FW/SHW bands
in the frequency conversion process.

4. CONCLUSION

In summary, we have presented a detailed temporal-spectral-
spatial analysis on the femtosecond pulse transporting, tempo-
ral evolution, spectral broadening in two sets of systems: a pure
LN thin plate and a PPLN thin plate. We have fully considered
the synergic action of the linear dispersion effect, the 2nd-NL
SHG effect, and the 3rd-NL SPM effect in our simulation pro-
cess based on an improved split-step Fourier transformation
method. The simulated spectra agree well with our previously
reported experiment data. Such a detailed analysis and discus-
sion provide a deep insight into the synergic actions of linear
and nonlinear effects and show that they are all indispensable
for fully understanding these fruitful optical and physical phe-
nomena and laws that are brought about by the interaction of a
femtosecond laser pulse with an LN nonlinear crystal.

For the pure LN system that inherently involves the linear
dispersion effect and the 3rd-NL SPM effect, we developed an
interference model that enables us to understand the peaks and
valleys represented in the spectrum profile. Moreover, we have
analyzed the synergic effect of the dispersion and SPM from
two aspects (the evolution of the spectrum and time-frequency
distribution) and quantified the extent of broadening by an ap-
propriate physical entity as Δϕmax. We have found that the
SPM process dominates the overall broadening phenomenon,
while the dispersion effect limits the SPM-induced broadening
to some extent and leads to the asymmetry in the time-fre-
quency distribution as well as in the energy distribution.

For the PPLN system, the linear dispersion, and the 2nd-
NL SHG and the 3rd-NL SPM effects coexist and take synergic
action. We have shown that when SPM does not exist, the con-
version efficiency of SHW is only 3%; at the same time, it re-
sults in a rather narrow bandwidth of only 71 nm (covering
613–684 nm) at the −30 dB level. However, the synergetic
SPM and SHG processes increase the conversion efficiency
up to 7% (matching quite well with our experimentally tested
conversion efficiency of 6.67%) with a bandwidth of 313 nm
(covering 515–817 nm) at the −30 dB level. The linear
dispersion also plays a crucial role along with these synergic
nonlinear actions. It not only can transform the intrapulse dis-
tribution of each pulse, affecting the original SPM-induced
broadening pattern and causing a strong broadening effect

of the SHW, but also can affect the frequency conversion pro-
cess via phase matching between pulses. By calculating the
maximum phase shift, we have found that the broadening de-
gree of SHW is even higher than the SPM-induced broadening
of FW at this time. By calculating the time-frequency distribu-
tion of SHW, we have noticed that the SHG process can also
bring a temporal frequency shift similar to that of the SPM-in-
duced frequency shift of FW. This indicates that the 2nd-NL
processes also have great potential for temporal phase control
(for example, pulse compression) comparable to or even
stronger than the traditionally used 3rd-NL effects like the
SPM effect or the XPM effect. We believe the physical model
of synergic linearity and nonlinearity developed and analyzed in
this work will help to draw a more realistic and authentic physi-
cal picture of interacting nonlinear processes brought about by
femtosecond laser propagation in bulk material under a large
pump energy intensity. This study can not only help to under-
stand the generation of broadband SC and even all-spectrum
white laser at a deeper level, but also can help to explore its
potential application in spatial-temporal-spectral control of ul-
trafast laser pulses.
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