• Chinese Journal of Quantum Electronics
  • Vol. 38, Issue 1, 94 (2021)
Wencai LI1、*, Yuliang MA2, and Jian CHEN3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2021.01.013 Cite this Article
    LI Wencai, MA Yuliang, CHEN Jian. Insitu measurement of damage characteristics of fused quartz[J]. Chinese Journal of Quantum Electronics, 2021, 38(1): 94 Copy Citation Text show less
    References

    [1] Laurence T A, Bude J D, Sonny L, et al. Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2)[J]. Optics Express, 2012, 20(10): 11561-11573.

    [2] Liu H, Ye X, Zhou X, et al. Subsurface defects characterization and laser damage performance of fused silica optics during HF-etched process[J]. Optical Materials, 2014, 36(5): 855-860.

    [3] Du D, Liu X, Korn G, et al. Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs[J]. Applied Physics Letters, 1994, 64(23): 3071-3073.

    [4] Ma B, Shen Z, He P, et al. Detection of subsurface defects of fused silica optics by confocal scattering microscopy[J]. Chinese Optics Letters, 2010, 8(3): 296-299.

    [5] Huang J, Liu H, Wang F, et al. Influence of bulk defects on bulk damage performance of fused silica optics at 355 nm nanosecond pulse laser[J]. Optics Express, 2017, 25(26): 33416-33428.

    [6] Liu H J, Wang F R, Luo Q, et al. Experimental comparison of damage performance induced by nanosecond 1 ω laser between K9 and fused silica optics[J]. Acta Physica Sinica, 2012, 61(7): 076103.

    [7] Shao J D, Dai Y P, Xu Q. Progress on optical components for ICF laser facility[J]. Optics and Precision Engineering, 2016, 24(12): 2889-2895.

    [8] Xu R. Light scattering: A review of particle characterization applications[J]. Particuology, 2015, 18: 11-21.

    [9] Carlos H H, Douglas P H. Emission reabsorption laser induced fluorescence (ERLIF) film thickness measurement[J]. Measurement Science and Technology, 2001, 12(4): 467-477.

    [10] Wu Z, Thomsen M, Kuo P, et al. Photothermal characterization of optical thin film coatings[J]. Optical Engineering, 1997, 36: 251-262.

    [11] Han Y, Wu Z, Joseph S R, et al. Pulsed photothermal deflection and diffraction effects: Numerical modeling based on Fresnel diffraction theory[J]. Optical Engineering, 1999, 38(12): 2122-2128.

    [12] Wu Z, Chen J, Dong J. Photothermal microscopy: An effective diagnostic tool for laser irradiation effects on fused silica and KDP[C]. Proceedings of SPIE, 2015, 9543: 95431V.

    [13] Carr C W, Radousky H B, Rubenchik A M, et al. Localized dynamics during laser-induced damage in optical materials[J]. Physical Review Letters, 2004, 92: 087401.

    [14] DeMange P, Negres R A, Raman R N, et al. Role of phase instabilities in the early response of bulk fused silica during laser-induced breakdown[J]. Physical Review B, 2011, 84: 054118.

    [15] Itatani J, Quéré F, Yudin G L, et al. Attosecond streak camera[J]. Physical Review Letters, 2002, 88: 173903.

    [16] Shepard C L, Campbell P M. Measurements of lateral thermal smoothing of 0.53 μm laser intensity nonuniformities via shock-wave analysis[J]. Physical Review A, 1989, 39: 1344-1350.

    [17] Chen J, Dong J, Wu Z. In-situ investigation of damage processes on fused silica induced by a pulsed 355 nm laser with high repetition rate[C]. Proceedings of SPIE, 2015, 9345: 93450A.

    [18] Wang Y D, Liu X M. Research progress of stand-off Raman spectroscopy[J]. Chinese Journal of Quantum Electronics, 2019, 36(3): 257-263.

    LI Wencai, MA Yuliang, CHEN Jian. Insitu measurement of damage characteristics of fused quartz[J]. Chinese Journal of Quantum Electronics, 2021, 38(1): 94
    Download Citation