• Chinese Journal of Quantum Electronics
  • Vol. 39, Issue 4, 574 (2022)
Renzhu KANG1、2、*, Renchong LYU1、2, Hao TENG2、3, Jiangfeng ZHU1, and Zhiyi WEI1、2、3、4
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2022.04.012 Cite this Article
    KANG Renzhu, LYU Renchong, TENG Hao, ZHU Jiangfeng, WEI Zhiyi. Study on Yb:KGW regenerative amplifier based on improved Frantz-Nodvik equation[J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 574 Copy Citation Text show less
    References

    [1] Zhu J F, Tian W L, Gao Z Y, et al. Diode-pumped all-solid-state femtosecond Yb laser oscillators [J]. Chinese Journal of Lasers, 2017, 44(9): 0900001.

    [2] Tian W L, Peng Y N, Zhang Z Y, et al. Diode-pumped power scalable Kerr-lens mode-locked Yb: CYA laser [J]. Photonics Research, 2018, 6(2): 127-131.

    [3] Manjooran S, Major A. Diode-pumped 45 fs Yb: CALGO laser oscillator with 1.7 MW of peak power [J]. Optics Letters, 2018, 43(10): 2324-2327.

    [4] Kitajima S, Nakao H, Shirakawa A, et al. Kerr-lens mode-locked Yb3+-doped Lu3Al5O12 ceramic laser[J]. Optics Letters, 2016, 41(19): 4570-4573.

    [5] Ma J, Huang H, Ning K J, et al. Generation of 30 fs pulses from a diode-pumped graphene mode-locked Yb: CaYAlO4 laser[J]. Optics Letters, 2016, 41(5): 890-893.

    [6] Zhao Z G, Cong Z H, Liu Z J. Review on ultrashort pulse laser amplifiers based on bulk Yb-doped gain media [J]. Laser & Optoelectronics Progress, 2020, 57(7): 071605.

    [7] Caracciolo E, Kemnitzer M, Guandalini A, et al. 28 W, 217 fs solid-state Yb: CAlGdO4 regenerative amplifiers [J]. Optics Letters, 2013, 38(20): 4131-4133.

    [8] Andriukaitis G, Kaksis E, Flory T, et al. Cryogenically cooled 30 mJ Yb: CaF2 regenerative amplifier [C]. Lasers Congress 201(ASSL, LSC, LAC), Advanced Solid State Lasers, 2016.

    [9] Zapata L E, Reichert F, Hemmer M, et al. 250 W average power, 100 kHz repetition rate cryogenic Yb: YAG amplifier for OPCPA pumping [J]. Optics Letters, 2016, 41(3): 492-495.

    [10] Nubbemeyer T, Kaumanns M, Ueffing M, et al. 1 kW, 200 mJ picosecond thin-disk laser system [J]. Optics Letters, 2017, 42(7): 1381-1384.

    [11] Caracciolo E, Pirzio F, Kemnitzer M, et al. 42 W femtosecond Yb:Lu2O3 regenerative amplifier [J]. Optics Letters, 2016, 41(15): 3395-3398.

    [12] Rudenkov A, Kisel V, Yasukevich A, et al. Yb3+: CaYAlO4-based chirped pulse regenerative amplifier [J]. Optics Letters, 2016, 41(10): 2249-2252.

    [13] Rudenkov A, Kisel V, Matrosov V, et al. 200 kHz 5.5 W Yb3+: YVO4-based chirped-pulse regenerative amplifier [J]. Optics Letters, 2015, 40(14): 3352-3355.

    [14] Mackonis P, Rodin A M. Laser with 1.2 ps, 20 mJ pulses at 100 Hz based on CPA with a low doping level Yb: YAG rods for seeding and pumping of OPCPA [J]. Optics Express, 2020, 28(2): 1261-1268.

    [15] Zhao Z G, Chen Q, Igarashi H, et al. Watt-level 193 nm source generation based on compact collinear cascaded sum frequency mixing configuration [J]. Optics Express, 2018, 26(15): 19435-19444.

    [16] Demirbas U, Cankaya H, Hua Y, et al. 20 mJ, sub-ps pulses at up to 70 W average power from a cryogenic Yb: YLF regenerative amplifier [J]. Optics Express, 2020, 28(2): 2466-2479.

    [17] Wang N N, Wang X L, Zhang T, et al. 23.9 W, 985 fs chirped pulse amplification system based on Yb: YAG rod amplifier [J]. IEEE Photonics Journal, 2019, 11(4): 1-7.

    [18] Sevillano P, Camy P, Doualan J L, et al. 130 fs multiwatt Yb: CaF2 regenerative amplifier pumped by a fiber laser [C]. Lasers Congress 201(ASSL, LSC, LAC), Advanced Solid State Lasers, 2016.

    [19] Kim G H, Yang J, Chizhov S A, et al. High average-power ultrafast CPA Yb:KYW laser system with dual-slab amplifier [J]. Optics Express, 2012, 20(4): 3434-3442.

    [20] Calendron A L, Cankaya H, Krtner F X. High-energy kHz Yb:KYW dual-crystal regenerative amplifier [J]. Optics Express, 2014, 22(20): 24752-24762.

    [21] He H J, Yu J, Zhu W T, et al. A Yb: KGW dual-crystal regenerative amplifier [J]. High Power Laser Science and Engineering, 2020, 8: e35.

    [22] Pouysegur J, Delaigue M, Zaouter Y, et al. Sub-100-fs Yb: CALGO nonlinear regenerative amplifier [J]. Optics Letters, 2013, 38(23): 5180-5183.

    [23] Yan D Y, Liu B W, Chu Y X, et al. Hybrid femtosecond laser system based on a Yb: KGW regenerative amplifier for NP polarization [J]. Chinese Optics Letters, 2019, 17(4): 041404.

    [24] Frantz L M, Nodvik J S. Theory of pulse propagation in a laser amplifier [J]. Journal of Applied Physics, 1963, 34(8): 2346-2349.

    [25] Grishin M, Gulbinas V, Michailovas A. Dynamics of high repetition rate regenerative amplifiers [J]. Optics Express, 2007, 15(15): 9434-9443.

    [26] Kroetz P, Ruehl A, Murari K, et al. Numerical study of spectral shaping in high energy Ho: YLF amplifiers [J]. Optics Express, 2016, 24(9): 9905-9921.

    [27] Lu J, Liu Z Z, Liu Y Q, et al. Femtosecond thin-disk regenerative amplifier under burst operation mode [J]. Chinese Journal of Lasers, 2017, 44(5): 0501008.

    [28] von Grafenstein L, Bock M, Griebner U. Bifurcation analysis in high repetition rate regenerative amplifiers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1-13.

    KANG Renzhu, LYU Renchong, TENG Hao, ZHU Jiangfeng, WEI Zhiyi. Study on Yb:KGW regenerative amplifier based on improved Frantz-Nodvik equation[J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 574
    Download Citation