• Matter and Radiation at Extremes
  • Vol. 6, Issue 2, 024201 (2021)
Qinying Liu1、2, Shiyu Liu1, Yongkang Luo1, and Xiaotao Han1、2、a)
Author Affiliations
  • 1Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.1063/5.0040208 Cite this Article
    Qinying Liu, Shiyu Liu, Yongkang Luo, Xiaotao Han. Pulsed-field nuclear magnetic resonance: Status and prospects[J]. Matter and Radiation at Extremes, 2021, 6(2): 024201 Copy Citation Text show less
    References

    [1] A. S. T. Cross, P. Gor’kov, Z. Gan, D. Massiot. Seeking higher resolution and sensitivity for NMR of quadrupolar nuclei at ultrahigh magnetic fields. J. Am. Chem. Soc., 124, 5634(2002).

    [2] R. W. Hall, J. L. Eilertsen, Z. Gan, L. Negureanu, L. S. Simeral, A. A. Mrse, F. R. Fronczek, L. G. Butler, F.-J. Wu. Structural characterization of Al10O6iBu16(μ-H)2, a high aluminum content cluster: Further studies of methylaluminoxane (MAO) and related aluminum complexes. Inorg. Chem., 46, 44(2007).

    [3] X. Wang, J. Xu, F. Deng, X. Wang, W. Li, Q. Wang, Z. Gan, I. Hung, G. Qi, F. Mentink-Vigier. Mapping the oxygen structure of γ-Al2O3 by high-field solid-state NMR spectroscopy. Nat. Commun., 11, 3620(2020).

    [4] H. W. Spiess. NMR spectroscopy: Pushing the limits of sensitivity. Angew. Chem., Int. Ed., 47, 639(2008).

    [5] H. Liu, K. Wang, L. Wang, Y. Wang, Y. D. B. Zhou, Q. Wang, J. Liu, L. Qin. Generation of 32.35 T with an all-superconducting magnet at IEECAS(2020).

    [6] J. R. Miller. The NHMFL 45-T hybrid magnet system: Past, present, and future. IEEE Trans. Appl. Supercond., 13, 1385(2003).

    [7] W. G. Moulton, A. P. Reyes. Nuclear magnetic resonace in solids at very high magnetic fields. High Magn. Fields, 3, 185(2006).

    [8] A. M. Wolters, P. V. Malawey, A. G. Webb, Y. Li, J. V. Sweedler. Multiple solenoidal microcoil probes for high-sensitivity, high-throughput nuclear magnetic resonance spectroscopy. Anal. Chem., 71, 4815(1999).

    [9] R. Weissleder, V. Ntziachristos, L. Josephson, D. Högemann. High throughput magnetic resonance imaging for evaluating targeted nanoparticle probes. Bioconjugate Chem., 13, 116(2002).

    [10] J. Xu, D. Raftery, M. A. Macnaughtan, T. Hou. High-throughput nuclear magnetic resonance analysis using a multiple coil flow probe. Anal. Chem., 75, 5116(2003).

    [11] R. Freeman, E. Kupče. New methods for fast multidimensional NMR. J. Biomol. NMR, 27, 101(2003).

    [12] L. Ciobanu, A. Webb, H. Wang. Reduced data acquisition time in multi-dimensional NMR spectroscopy using multiple-coil probes. J. Magn. Reson., 173, 134(2005).

    [13] K. Ruan, C. Jones, R. Albrecht, D. L. Olson, T. L. Peck, J. A. Norcross, C. T. Milling, D. Xu, J. Likos, A. Audrieth. Multiplexed NMR: An automated CapNMR dual-sample probe. Anal. Chem., 82, 7227(2010).

    [14] M. R. Geller. Fundamentals of Physics(2013).

    [15] M. Mori, T. Goto, T. Fukase, T. Suzuki, K. Chiba. High-field Cu/La-NMR study on high-Tc cuprate La2−xBaxCuO4 (x = 0.125). Physica B, 284-288, 657(2000).

    [16] X. Xu, T. Adachi, C. Panagopoulos, N. E. Hussey, B. Vignolle, E. V. Kurganova, I. Mouzopoulou, C. Proust, U. Zeitler, P. M. C. Rourke, Y. Tanabe, Y. Wang, Y. Koike. Phase-fluctuating superconductivity in overdoped La2−xSrxCuO4. Nat. Phys., 7, 455(2011).

    [17] D. A. Bonn, E. Palm, C. H. Mielke, T. P. Murphy, G. G. Lonzarich, S. E. Sebastian, W. N. Hardy, N. Harrison, R. Liang. A multi-component Fermi surface in the vortex state of an underdoped high-Tc superconductor. Nature, 454, 200(2008).

    [18] Z. Zhang, Y. Wu, S. Li, X. Li, M. Huang, X. Xiong. Multifunctional high-performance van der Waals heterostructures. Nat. Nanotechnol., 12, 1148(2017).

    [19] G. S. Boebinger, J.-H. Chu, I. R. Fisher, S. C. Riggs, J. G. Analytis, R. D. McDonald. Two-dimensional Dirac fermions in a topological insulator: Transport in the quantum limit. Nat. Phys., 6, 960(2010).

    [20] X.-C. Xie, Y. Feng, L. Li, M. Z. Hasan, C. Guo, H.-Z. Lu, H. Liu, T. Neupert, J. Wang, H. Lu, Z. Lin, Z. Z. Du, C.-C. Lee, C. M. Wang, C. Zhang, H. Lin, S. Jia, G. Chang, J. Zhang, S.-M. Huang, C.-H. Hsu, S.-Y. Xu, C.-L. Zhang. Magnetic-tunnelling-induced Weyl node annihilation in TaP. Nat. Phys., 13, 979(2017).

    [21] R. N. Shelton, P. N. Rogers, W. G. Moulton, P. L. Kuhns, A. P. Reyes, T. Caldwell. High field NMR studies of NaV2O5 to 44.7 T. Int. J. Mod. Phys. B, 16, 3298(2008).

    [22] M. H. Levitt. Spin Dynamics: Basics of Nuclear Magnetic Resonance(2002).

    [23] M.-H. Julien, T. Wu, R. Liang, W. N. Hardy, C. Berthier, H. Mayaffre, M. Horvatić, S. Krämer, D. A. Bonn. Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy. Nature, 477, 191(2011).

    [24] D. Shaw. Fourier Transform NMR Spectroscopy(1984).

    [25] N. Murali, C. R. Bowers, S. Ahn, W. Brey, W. S. Warren, Y.-Y. Lin. High-resolution, >1 GHz NMR in unstable magnetic fields. Phys. Rev. Lett., 85, 3732(2000).

    [26] P. Gor’kov, H.-T. Kwak, M. Bird, T. Cross, W. Brey, K. Shetty, Z. Gan. High-field NMR using resistive and hybrid magnets. J. Magn. Reson., 191, 135(2008).

    [27] J. L. Schiano, K. K. Shetty, J. E. Samra, W. W. Brey, M. Li. Reduction of magnetic field fluctuations in powered magnets for NMR using inductive measurements and sampled-data feedback control. J. Magn. Reson., 212, 254(2011).

    [28] A. P. M. Kentgens, J. W. M. van Os, J. C. Maan, P. J. M. van Bentum. Strategies for solid-state NMR in high-field Bitter and hybrid magnets. Chem. Phys. Lett., 376, 338(2003).

    [29] T. Shimizu, T. Fujito, M. Yoshikawa, K. Hashi, M. Hamada, T. Miki, H. Wada, A. Goto, S. Matsumoto, T. Kiyoshi, S. Hayashi, S. Ito, K. Hasegawa. Achievement of a 920-MHz high resolution NMR. J. Magn. Reson., 156, 318(2002).

    [30] J. Haase, D. Eckert, F. Steglich, H. Eschrig, K. H. Müller, H. Siegel. High-field NMR in pulsed magnets. Solid State Nucl. Magn. Reson., 23, 263(2003).

    [31] D. Eckert, H. Siegel, F. Steglich, J. Haase, K.-H. Müller, H. Eschrig. Nuclear magnetic resonance in pulsed high-field magnets. Concepts Magn. Reson., Part B, 19, 9(2003).

    [32] J. Haase, F. Steglich, D. Eckert, K.-H. Müller, A. Simon, H. Siegel, H. Eschrig. NMR in pulsed high magnetic fields. J. Magn. Magn. Mater., 272-276, e1623-e1625(2004).

    [33] J. Haase. First 2H NMR at 58 T. Appl. Magn. Reson., 27, 297(2004).

    [34] J. Haase, D. Eckert, K.-H. Müller, A. Simon, H. Eschrig, F. Steglich, H. Siegel. NMR at the Frontier of pulsed high field magnets. Physica B, 346-347, 514(2004).

    [35] K.-H. Müller, H. Siegel, J. Haase, A. G. Webb, M. Kozlov, B. Büchner, H. Eschrig. NMR in pulsed high magnetic fields at 1.3 GHz. J. Magn. Magn. Mater., 290-291, 438(2005).

    [36] K.-H. Müller, H. Eschrig, H. Siegel, M. B. Kozlov, B. Büchner, A. G. Webb, J. Haase. 2 GHz 1H NMR in pulsed magnets. Solid State Nucl. Magn. Reson, 27, 206-208(2005).

    [37] M. B. Kozlov, J. Haase, A. G. Webb, C. Baumann. 56 T 1H NMR at 2.4 GHz in a pulsed high-field magnet. Solid State Nucl. Magn. Reson., 28, 64(2005).

    [38] S. Kawasaki, N. Nishihagi, S. Kimura, M. Hagiwara, G. Zheng, K. Kindo, K. Katayama, M. Nishiyama. Spin–echo NMR in pulsed high magnetic fields up to 48 T. J. Phys. Soc. Jpn., 78, 095001(2009).

    [39] H. Yamauchi, M. Karppinen, T. Motohashi, R. Kanno, K. Shimada, S. Kawasaki, T. Ono, G. Zheng. Measurement of electron correlations in LixCoO2 (x = 0.0–0.35) using 59Co nuclear magnetic resonance and nuclear quadrupole resonance techniques. Phys. Rev. B, 79, 220514(2009).

    [40] E. Kampert, T. Herrmannsdörfer, J. Haase, M. Braun, F. Wolff-Fabris, J. Kohlrautz, B. Meier, J. Wosnitza. Nuclear magnetic resonance apparatus for pulsed high magnetic fields. Rev. Sci. Instrum., 83, 083113(2012).

    [41] M. Kandatsu, M. Hagiwara, G.-Q. Zheng, S. Kimura, K. Kindo, K. Katayama, N. Nishihagi. 59Co NMR at pulsed high magnetic fields. J. Low Temp. Phys., 159, 280(2010).

    [42] G. L. J. A. Rikken, E. Abou-Hamad, P. Bontemps. NMR in pulsed magnetic field. Solid State Nucl. Magn. Reson., 40, 42(2011).

    [43] G. L. J. A. Rikken, H. Stork, P. Bontemps. NMR in pulsed high-field magnets and application to high-TC superconductors. J. Magn. Reson., 234, 30(2013).

    [44] L. Schultz, Y. Skourski, T. Herrmannsdörfer, A. D. Bianchi, S. A. Zvyagin, S. Zherlitsyn, J. Freudenberger, J. Wosnitza, J. Haase, N. Kozlova. Dresden pulsed magnetic field facility. J. Magn. Magn. Mater., 310, 2728(2007).

    [45] S. Zherlitsyn, J. Wosnitza, R. Daou, J. Haase, B. Meier, T. Herrmannsdörfer, M. Nicklas, F. Steglich, F. Weickert. Implementation of specific-heat and NMR experiments in the 1500 ms long-pulse magnet at the Hochfeld–Magnetlabor Dresden. Meas. Sci. Technol., 23, 105001(2012).

    [46] P. Frings, M. Suleiman, A. Orlova, G. L. J. A. Rikken. New high homogeneity 55 T pulsed magnet for high field NMR. J. Magn. Reson., 268, 82(2016).

    [47] E. Auken, E. Dalgaard, J. J. Larsen. Adaptive noise cancelling of multichannel magnetic resonance sounding signals. Geophys. J. Int., 191, 88(2012).

    [48] W. Chen, H. Zhang, D. Yu, H. Ma. SVD-based technique for interference cancellation and noise reduction in NMR measurement of time-dependent magnetic fields. Sensors, 16, 323(2016).

    [49] T. Shimizu, K. Hashi, K. Takegoshi, T. Fujito, T. Iijima. High-resolution NMR with resistive and hybrid magnets: Deconvolution using a field-fluctuation signal. J. Magn. Reson., 184, 258(2007).

    [50] T. Iijima, K. Takegoshi. Compensation of effect of field instability by reference deconvolution with phase reconstruction. J. Magn. Reson. Imaging, 191, 128(2008).

    [51] F. Wolff-Fabris, B. Meier, T. Herrmannsdörfer, J. Haase, S. Greiser, J. Wosnitza. NMR signal averaging in 62 T pulsed fields. J. Magn. Reson., 210, 1(2011).

    [52] E. L. Green, J. Haase, J. Wosnitza, J. Kohlrautz, H. Kühne, S. Reichardt. NMR shift and relaxation measurements in pulsed high-field magnets up to 58 T. J. Magn. Reson., 263, 1(2016).

    [53] H. Kühne, T. Herrmannsdörfer, J. Kohlrautz, J. Haase, J. Wosnitza, Z. T. Zhang, E. L. Green, B. D. Gaulin, H. A. Dabkowska, R. Stern. Field-stepped broadband NMR in pulsed magnets and application to SrCu2(BO3)2 at 54 T. J. Magn. Reson., 271, 52(2016).

    [54] J. Zeng, B. R. Donald, P. Zhou. Protein side-chain resonance assignment and NOE assignment using RDC-defined backbones without TOCSY data. J. Biomol. NMR, 50, 371(2011).

    [55] J. Yang, P. Huang, Z. Gong, Q. Xing, J. Sun, X. Dong. Visualizing an ultra-weak protein–protein interaction in phosphorylation signaling. Angew. Chem., Int. Ed, 53, 11501-11505(2014).

    [56] C. Tang, Z. Liu, W.-P. Zhang, Z. Gong, D.-C. Guo. Subtle dynamics of holo glutamine binding protein revealed with a rigid paramagnetic probe. Biochemistry, 53, 1403(2014).

    [57] C. Tang, X.-H. Gu, W.-X. Jiang, X. Dong. Lanthanoid tagging via an unnatural amino acid for protein structure characterization. J. Biomol. NMR, 67, 273(2017).

    [58] C. Tang, Z. Gong, X. Gu, J. Wang, D. Guo. Protein structural ensembles visualized by solvent paramagnetic relaxation enhancement. Angew. Chem., Int. Ed., 56, 1002(2020).

    [59] C. Tang, C. D. Schwieters, Z. Gong. Theory and practice of using solvent paramagnetic relaxation enhancement to characterize protein conformational dynamics. Methods, 148, 48(2018).

    [60] L. J. Berliner. The evolution of biomedical EPR (ESR). Biomed. Spectrosc. Imaging, 5, 5(2016).

    [61] S. M. Grosser, J. J. Inbaraj, T. B. Cardon, G. A. Lorigan, M. Laryukhin. Determining the topology of integral membrane peptides using EPR spectroscopy. J. Am. Chem. Soc., 128, 9549(2006).

    [62] E. E. Sigmund, A. P. Reyes, W. P. Halperin, M. Eschrig, P. Kuhns, W. G. Moulton, H. N. Bachman, V. F. Mitrovic. Spatially resolved electronic structure inside and outside the vortex cores of a high-temperature superconductor. Nature, 413, 501(2006).

    [63] J. Wang, G. Cao, H. Zuo, J. Bao, Z. Zhu, Z. Xia, Y. Liu, Z. Xu, Z. Jin, L. Li, J. Kang. Temperature and angular dependence of the upper critical field in K2Cr3As3. Phys. Rev. B, 95, 014502(2017).

    [64] M. Tokumoto, K. Storr, A. Kobayashi, H. Tanaka, L. Balicas, L. P. Gor’kov, V. Barzykin, S. Uji, J. S. Brooks, H. Kobayashi. Superconductivity in an organic insulator at very high magnetic fields. Phys. Rev. Lett., 87, 067002(2001).

    [65] A. Kobayashi, M. Tokumoto, S. Uji, H. Kobayashi, T. Terashima, Y. Terai, T. Yakabe, H. Tanaka, H. Shinagawa. Magnetic-field-induced superconductivity in a two-dimensional organic conductor. Nature, 410, 908(2001).

    [66] Y. Mori, H. Mukuda, Z. Q. Mao, K. Ishida, K. Asayama, Y. Maeno, Y. Kitaoka. Spin-triplet superconductivity in Sr2RuO4 identified by 17O Knight shift. Nature, 396, 658(1998).

    [67] C. W. Hicks, Y. Luo, E. D. Bauer, S. E. Brown, F. Jerzembeck, D. A. Sokolov, A. Chronister, N. Kikugawa, A. P. Mackenzie, S. Raghu, Y.-S. Su, A. Pustogow. Constraints on the superconducting order parameter in Sr2RuO4 from oxygen-17 nuclear magnetic resonance. Nature, 574, 72(2019).

    [68] M. Kriener, Y. Ando, G. Zheng, K. Segawa, K. Matano. Spin-rotation symmetry breaking in the superconducting state of CuxBi2Se3. Nat. Phys., 12, 852(2016).

    [69] R. A. Ferrell, P. Fulde. Superconductivity in a strong spin-exchange field. Phys. Rev., 135, A550(1964).

    [70] Y. N. Ovchinnikov, A. I. Larkin. Density of states in inhomogeneous superconductors. Sov. Phys. JETP, 34, 1144(1972).

    [71] Y. Matsuda, H. Shimahara. Fulde–Ferrell–Larkin–Ovchinnikov state in heavy fermion superconductors. J. Phys. Soc. Jpn., 76, 051005(2007).

    [72] S. Brown, P. Kuhns, R. Kato, J. Brooks, A. Reyes, J. Wright, M. Kobayashi, E. Green, J. Schlueter, H. Yamamoto. Zeeman–driven phase transition within the superconducting state of κ-(BEDT-TTF)2Cu(NCS)2. Phys. Rev. Lett., 107, 087002(2011).

    [73] M. Horvatić, K. Miyagawa, K. Kanoda, H. Mayaffre, S. Krämer, V. F. Mitrović, C. Berthier. Evidence of Andreev bound states as a hallmark of the FFLO phase in κ-(BEDT-TTF)2Cu(NCS)2. Nat. Phys., 10, 928(2014).

    [74] H. Kühne, G. Koutroulakis, J. Wosnitza, J. A. Schlueter, S. E. Brown. Microscopic study of the Fulde–Ferrell–Larkin–Ovchinnikov state in an all-organic superconductor. Phys. Rev. Lett., 116, 067003(2016).

    [75] M. Cheng, Z. Y. Meng, X. Zhang, Y. Wang, F. Pollmann. Quantum spin liquid with even ising gauge field structure on Kagome lattice. Phys. Rev. Lett., 121, 057202(2018).

    [76] C. Xu, Y. You, G. Sun, Z. Y. Meng, A. W. Sandvik, N. Ma, A. Vishwanath. Dynamical signature of fractionalization at the deconfined quantum critical point. Phys. Rev. B, 98, 174421(2018).

    [77] A. W. Sandvik, P. Weinberg, B. Zhao. Symmetry-enhanced discontinuous phase transition in a two-dimensional quantum magnet. Nat. Phys., 15, 678(2019).

    [78] C. Dong, A. A. Aczel, M. Brando, Y. Kohama, R. Movshovich, V. O. Garlea, A. Steppke, M. B. Gamża, N. Harrison, A. Demuer, H. Rosner, M. B. Stone, F. Weickert, A. A. Tsirlin. Field-induced double dome and Bose–Einstein condensation in the crossing quantum spin chain system AgVOAsO4. Phys. Rev. B, 100, 104422(2019).

    [79] J. Bourg, T. Murphy, C. Petrovic, R. McDonald, P. Schlottmann, K. Purcell, D. Graf, M. Kano, C. Mielke, M. M. Altarawneh, S. W. Tozer, T. Ebihara, J. Cooley, E. Palm, R. Hu. Pressure evolution of a field induced Fermi surface reconstruction and of the Neel critical field in CeIn3. Phys. Rev. B, 79, 214428(2009).

    [80] H. Sakai, I. Sheikin, D. Aoki, S. Krämer, N. Bruyant, H. Mayaffre, A. Orlova, C. Berthier, S. Kambe, T. Hattori, N. Higa, M. Horvatić, M. H. Julien, Y. Tokunaga. High-field phase diagram of the heavy-fermion metal CeIn3: Pulsed-field NMR study on single crystals up to 56 T. Phys. Rev. B, 99, 085142(2019).

    [81] H. Kageyama, K. Kodama, F. Becca, M. Takigawa, Y. Ueda, S. Miyahara, C. Berthier, F. Mila, M. Horvatić. Magnetic superstructure in the two-dimensional quantum antiferromagnet SrCu2(BO3)2. Science, 298, 395(2002).

    [82] F. Lévy-Bertrand, T. Waki, M. Takigawa, S. Krämer, M. Horvatić, F. Mila, C. Berthier, H. K. Y. Ueda, I. Sheikin. Incomplete Devil’s staircase in the magnetization curve of SrCu2(BO3)2. Phys. Rev. Lett., 110, 067210(2013).

    [83] C. Berthier, M. Horvatić, H. Kageyama, M. Takigawa, S. Matsubara, Y. Ueda. NMR evidence for the persistence of a spin superlattice beyond the 1/8 magnetization plateau in SrCu2(BO3)2. Phys. Rev. Lett., 101, 037202(2008).

    [84] B. Gaulin, I. Heinmaa, P. Kuhns, R. Stern, A. Reyes, H. Dabkowska, W. Moulton. High field 11B NMR study of 1/3 magnetization plateau of 2D quantum spin system SrCu2(BO3)2(2004).

    [85] M. Jaime, S. A. Crooker, H. A. Dabkowska, A. E. Feiguin, C. D. Batista, B. D. Gaulin, R. Daou, A. Uchida, F. Weickert. Magnetostriction and magnetic texture to 100.75 Tesla in frustrated SrCu2(BO3)2. Proc. Natl. Acad. Sci. U. S. A., 109, 012404(2012).

    [86] N. Abe, G. R. Foltin, P. Corboz, H. Kageyama, K. P. Schmidt, A. Honecker, S. R. Manmana, F. Mila, Y. H. Matsuda, S. Takeyama. Magnetization of SrCu2(BO3)2 in ultrahigh magnetic fields up to 118 T. Phys. Rev. Lett., 111, 137204(2013).

    [87] M. Yoshida, K. Yoshimura, M. Takigawa, K. Nawa. Anisotropic spin fluctuations in the quasi one-dimensional frustrated magnet LiCuVO4. J. Phys. Soc. Jpn., 82, 094709(2013).

    [88] N. Büttgen, A. P. Reyes, M. Hagiwara, T. Fujita, P. Kuhns, A. Prokofiev, M. Takigawa, L. E. Svistov, K. Nawa, K. Yoshimura. Search for a spin-nematic phase in the quasi-one-dimensional frustrated magnet LiCuVO4. Phys. Rev. B, 90, 134401(2014).

    [89] M. Horvatić, R. K. Kremer, J. Wosnitza, A. Orlova, G. L. J. A. Rikken, E. L. Green, J. M. Law, G. Chanda, D. I. Gorbunov, S. Krämer. Nuclear magnetic resonance signature of the spin-nematic phase in LiCuVO4 at high magnetic fields. Phys. Rev. Lett., 118, 247201(2017).

    [90] Y. Kohama, H. Ishikawa, Z. Hiroi, N. Shannon, K. Kindo, A. Matsuo. Possible observation of quantum spin-nematic phase in a frustrated magnet. Proc. Natl. Acad. Sci. U. S. A., 116, 10686(2019).

    [91] G. L. Kuang, S. F. Shao. The technologies and scientific researches of steady high magnetic field. Sci. Sin., 44, 1049(2014).

    [92] T. Ding, Z. Zhu, X. Han, J. Wang, Y. Han, J. Han, Z. Wang, L. Li, Y. Lv, T. Peng, Q. Cao, Z. Ouyang, H. Ding, H. Xiao, Y. Pan, Z. Xia. The pulsed high magnetic field facility and scientific research at Wuhan National High Magnetic Field Center. Matter Radiat. Extremes, 2, 278(2017).

    [93] N. Beckmann, L. Garrido. New Applications of NMR in Drug Discovery and Development(2013).

    [94] A. G. Palmer. NMR characterization of the dynamics of biomacromolecules. Chem. Rev., 104, 3623(2004).

    [95] R. D. A. Alvares, P. M. Macdonald, A. Hasabnis, R. S. Prosser. Quantitative detection of PEGylated biomacromolecules in biological fluids by NMR. Anal. Chem., 88, 3730(2016).

    [96] M. J. Duer. Solid State NMR Spectroscopy: Principles and Applications(2002).

    [97] C. Bonhomme, D. Laurencin, C. Gervais. Recent NMR developments applied to organic–inorganic materials. Prog. Nucl. Magn. Reson. Spectrosc., 77, 1(2014).

    [98]

    [99] N. Miura, F. Herlach. High Magnetic Fields: Science and Technology(2003).

    [100] L. J. Campbell, D. G. Rickel, H. J. Schneider-Muntau, H. J. Boenig, J. R. Sims, J. B. Schillig. The NHMFL long-pulse magnet system-60-100 T. Physica B., 216, 218(1996).

    [101] H. Sassik, E. Wagner, O. Mayerhofer, R. Grössinger, M. Schrenk. Austromag: Pulsed magnetic fields beyond 40 T. Physica B., 346-347, 609(2004).

    [102] Y. Xu, T. Ding, W. Liu, H. Ding, C. Jiang, Y. Pan, L. Li, X. Duan, J. Hu. Design of a 135 MW power supply for a 50 T pulsed magnet. IEEE Trans. Appl. Supercond., 22, 5400504(2012).

    [103] Y. Lv, T. Ding, S. Zhang, L. Li, Y. Ma, Y. Pan, H. Xiao, F. Hu. Development of a high-stability flat-top pulsed magnetic field facility. IEEE Trans. Power Electron., 29, 4532(2014).

    [104] K. Kindo, Y. Kohama. Generation of flat-top pulsed magnetic felds with feedback control approach. Rev. Sci. Instrum., 86, 104701(2015).

    [105] X. Han, S. Zhang, H. Xiao, J. Xie, T. Ding, Z. Wang. Realization of high-stability flat-top pulsed magnetic fields by a bypass circuit of IGBTs in the active region. IEEE Trans. Power Electron., 35, 2436(2020).

    [106] J. Zhao, F. Jiang, T. Peng, Y. Pan, L. Li, H. Xiao, F. Herlach. Design and test of a flat-top magnetic field system driven by capacitor banks. Rev. Sci. Instrum., 85, 045106(2014).

    [107] S. Chen, S. Wang, T. Peng, R. Huang, L. Li, L. Deng, S. Jiang, F. Jiang. Upgrade of the pulsed magnetic field system with flat-top at the WHMFC. IEEE Trans. Appl. Supercond., 30, 4900404(2020).

    [108] Z. Zhang, H. Gao. Nuclear Magnetic Resonance(2008).

    [109] M. Motokawa. Physics in high magnetic fields. Rep. Prog. Phys., 67, 1995(2004).

    [110] T. Meissner, J. Haase, P. L. Alireza, S. K. Goh, D. Rybicki. High sensitivity nuclear magnetic resonance probe for anvil cell pressure experiments. Rev. Sci. Instrum., 80, 073905(2009).

    [111] M. Lawson, P. C. Canfield, R. Sarkar, T. Kissikov, B. T. Bush, N. J. Curro. Nuclear magnetic resonance probe head design for precision strain control. Rev. Sci. Instrum., 88, 103902(2017).

    [112] X.-T. Han, H.-K. Zuo, Q.-Y. Liu, J.-F. Wang, M. Yang. Electrical transport measurement system in pulsed high magnetic field based on rotation sample rod. Acta Phys. Sin., 68, 230701(2019).

    [113] E. R. H. van Eck, P. J. M. van Bentum, A. Brinkmann, A. P. M. Kentgens, H. Janssen. Microcoil high-resolution magic angle spinning NMR spectroscopy. J. Am. Chem. Soc., 128, 8722(2006).

    [114] A. G. Webb. Radiofrequency microcoils for magnetic resonance imaging and spectroscopy. J. Magn. Reson., 229, 55(2013).

    Qinying Liu, Shiyu Liu, Yongkang Luo, Xiaotao Han. Pulsed-field nuclear magnetic resonance: Status and prospects[J]. Matter and Radiation at Extremes, 2021, 6(2): 024201
    Download Citation