[1] M. Diez-Silva, M. Dao, J. Han, C. Lim, S. Suresh. Shape and biomechanical characteristics of human red blood cells in health and disease. MRS Bulletin, 35, 382-388(2010).
[2] C. Geers, G. Gros. Carbon dioxide transport and carbonic anhydrase in blood and muscle. Physiol. Rev., 80, 681-715(2000).
[3] A. Gillespie, A. Doctor. Red blood cell contribution to hemostasis. Front. Pediatr., 9, 1-9(2021).
[4] L. Anderson, I. Brodsky, N. Mangalmurti. The evolving erythrocyte: Red blood cells as modulators of innate immunity. J. Immunol., 201, 1343-1351(2018).
[5] O. Baskurt, B. Neu, H. Meiselman. Red Blood Cell Aggregation(2012).
[6] M. W. Rampling, H. J. Meiselman, B. Neub, O. K. Baskurt. Influence of cell-specific factors on red blood cell aggregation. Biorheology, 41, 91-112(2004).
[7] K. Lee, A. Danilina, A. Potkin, M. Kinnunen, A. Priezzhev, I. Meglinski. RBC aggregation dynamics in autologous plasma and serum studied with double-channel optical tweezers. Proc. SPIE, 9917, 991704(2016).
[8] A. Muravyov, I. Tikhomirova. Role of molecular signaling pathways in changes of red blood cell deformability. Clin. Hemorheol. Microcirc., 53, 45-59(2012).
[9] A. Muravyov. The role of gaseous mediators (CO, NO and H2S) in the regulation of blood circulation: Analysis of the participation of blood cell microrheology [in Russian]. Reg. Blood Circ. Microcirc., 20, 91-99(2021).
[10] N. Tran, T. Garcia, M. Aniqa, S. Ali, A. Ally, S. Nauli. Endothelial nitric oxide synthase (enos) and the cardiovascular system: In physiology and in disease states. Am. J. Biomed. Sci. Res., 15, 153-177(2022).
[11] L. Ignarro, C. Napoli, J. Loscalzo. Nitric oxide donors and cardiovascular agents modulating the bioactivity of nitric oxide — an overview. Circ. Res., 90, 21-8(2002).
[12] M. Cortese-Krott, M. Kelm. Endothelial nitric oxide synthase in red blood cells: Key to a new erythrocrine function?. Redox Biol., 2, 251-258(2013).
[13] A. Muravyov, P. Avdonin, I. Tikhomirova, S. Bulaeva, J. Malysheva. Effects of gasotransmitters on membrane elasticity and microrheology of erythrocytes. Biochem. Moscow Suppl. Ser. A, 13, 225-232(2019).
[14] M. Bor-Kucukatay, R. Wenby, H. Meiselman, O. Baskurt. Effects of nitric oxide on red blood cell deformability. Am. J. Physiol. Heart Circ. Physiol., 284, H1577-H1584(2003).
[15] P. Ulker, N. Yaras, C. Celik-Ozenci, H. Meiselman, O. Baskurt. Shear stress activation of nitric oxide synthase and increased no levels in human red blood cells. Nat. Preced., 5, 1-13(2010).
[16] A. Mozar, P. Connes, B. Collins, H.-D. MD, M. Romana, N. Lemonne, W. Bloch, M. Grau. Red blood cell nitric oxide synthase modulates red blood cell deformability in sickle cell anemia. Clin. Hemorheol. Microcirc., 64, 728-736(2015).
[17] A. Pribush, D. Zilberman-Kravits, N. Meyerstein. The mechanism of the dextran-induced red blood cell aggregation. Eur. Biophys. J., 36, 85-94(2007).
[18] A. N. Semenov, A. Lugovtsov, P. Ermolinskiy, K. Lee, A. V. Priezzhev. Problems of red blood cell aggregation and deformation assessed by laser tweezers, diffuse light scattering and laser diffractometry. Photonics, 9, 1-19(2022).
[19] M. Uyuklu, M. Cengiz, P. Ulker, T. Hever, J. Tripette, P. Connes, N. Nemeth, H. Meiselman, O. Baskurt. Effects of storage duration and temperature of human blood on red cell deformability and aggregation. Clin. Hemorheol. Microcirc., 41, 269-278(2009).
[20] A. V. Priezzhev, K. Lee, N. N. Firsov, J. Lademann, V. V. Tuchin. Handbook of Optical Biomedical Diagnostics, 2, 5-36(2016).
[21] S. Shin, Y. Yang, J. Suh. Measurement of erythrocyte aggregation in a microchip stirring system by light transmission. Clin. Hemorheol. Microcirc., 41, 197-207(2009).
[22] J. Kim, H. Chung, M. Jo, B. Lee, A. Karimi, S. Shin. The role of critical shear stress on acute coronary syndrome. Clin. Hemorheol. Microcirc., 55, 101-109(2013).
[23] P. B. Ermolinskiy, A. N. Semenov, A. E. Lugovtsov, C. Poeschl, U. Windberger, E. Kaliviotis, A. V. Priezzhev. Effect of different macromolecules on viscous and microrheologic properties of blood at various temperatures. Proc. SPIE, 11065, 1106507-1-1106507-5(2019).
[24] J. Mauer, M. Peltomäki, S. Poblete, G. Gompper, D. Fedosov. Static and dynamic light scattering by red blood cells: A numerical study. PLoS ONE, 12, 1-19(2017).
[25] O. Baskurt, M. Hardeman, M. Uyuklu, P. Ulker, M. Cengiz, N. Nemeth, S. Shin, T. Alexy, H. Meiselman. Comparison of three commercially available ektacytometers with different shearing geometries. Biorheology, 46, 251-264(2009).
[26] J. Gounley, Y. Peng. Computational modeling of membrane viscosity of red blood cells. Commun. Comput. Phys., 17, 1073-1087(2015).
[27] N. N. Firsov, A. V. Priezzhev, N. V. Klimova, A. Y. Tyurina. Fundamental laws of the deformational behavior of erythrocytes in shear flow. J. Eng. Phys. Thermophys., 79, 118-124(2006).
[28] J. Grice. Graphical exploratory data analysis. Technometrics, 31, 116-117(2012).
[29] K. Lee, E. Shirshin, N. Rovnyagina, F. Yaya, Z. Boujja, A. Priezzhev, C. Wagner. Dextran adsorption onto red blood cells revisited: Single cell quantification by laser tweezers combined with microfluidics. Biomed. Opt. Express, 9, 2755-2764(2018).
[30] E. Nader, M. Romana, N. Guillot, R. Fort, E. Stauffer, N. Lemonne, Y. Garnier, S. C. Skinner, M. Etienne-Julan, M. Robert, A. Gauthier, G. Cannas, S. Antoine-Jonville, B. Tressières, M.-D. Hardy-Dessources, Y. Bertrand, C. Martin, C. Renoux, P. Joly, M. Grau, P. Connes. Association between nitric oxide, oxidative stress, eryptosis, red blood cell microparticles, and vascular function in sickle cell anemia. Front. Immunol., 11, 1-13(2020).
[31] L. Kuck, J. N. Peart, M. J. Simmonds. Calcium dynamically alters erythrocyte mechanical response to shear. Biochim. Biophys. Acta Mol. Cell Res., 1867, 118802(2020).
[32] V. Barodka, J. G. Mohanty, A. K. Mustafa, L. Santhanam, A. Nyhan, A. K. Bhunia, G. Sikka, D. Nyhan, D. E. Berkowitz, J. M. Rifkind. Nitroprusside inhibits calcium-induced impairment of red blood cell deformability. Transfusion, 54, 434-444(2013).
[33] N. Cilek, E. Ugurel, E. Goksel, O. Yalcin. Signaling mechanisms in red blood cells: A view through the protein phosphorylation and deformability. J. Cell. Physiol.(2023).