• Laser & Optoelectronics Progress
  • Vol. 52, Issue 2, 20005 (2015)
Li Chaoran*, Dai Shixun, Wu Yuehao, Zhang Peiqing, Lü Sheqin, Shen Xiang, and Wang Xunsi
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop52.020005 Cite this Article Set citation alerts
    Li Chaoran, Dai Shixun, Wu Yuehao, Zhang Peiqing, Lü Sheqin, Shen Xiang, Wang Xunsi. Research Progress of Chalcogenide Glass Based Micro-Nano Photonic Devices[J]. Laser & Optoelectronics Progress, 2015, 52(2): 20005 Copy Citation Text show less
    References

    [1] Koonath P, Kishima K, Indukuri T, et al.. Sculpting of three-dimensional nano-optical structures in silicon [J]. Appl Phys Lett, 2003, 83(24): 4909-4911.

    [2] Tong L, Gattass R R, Ashcom J B, et al.. Subwavelength-diameter silica wires for low-loss optical wave guiding [J]. Nature, 2003, 426(6968): 816-819.

    [3] Zakery A, Elliott S R. Optical properties and applications of chalcogenide glasses: a review [J]. Journal of Non-Crystalline Solids, 2003, 330(1-3): 1-12.

    [4] Seddon A B. Chalcogenide glasses: a review of their preparation, properties and applications [J]. Journal of Non-Crystalline Solids, 1995, 184(0): 44-50.

    [5] Smektala F, Brilland L, Chartier T, et al.. Recent advances in the development of holey optical fibers based on sulphide glasses [C]. SPIE, 2006, 5128: 61280M.

    [6] Fan Xinye, Xu Diefeng, Shen Xiang, et al.. Third order nonlinear optical properties of GeS2-Ga2S3-Sb2S3-AgCl glass [J]. Acat Photonica Sinica, 2010, 39(2): 210-213.

    [7] Slusher R E, Lenz G, Hodelin J, et al.. Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers [J]. J Opt Soc Am B, 2004, 21(6): 1146-1155.

    [8] Mescia L, Bia P, De Sario M, et al.. Design of mid-infrared amplifiers based on fiber taper coupling to erbium-doped microspherical resonator [J]. Opt Express, 2012, 20(7): 7616-7629.

    [9] Carlie N, Musgraves J D, Zdyrko B, et al.. Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges [J]. Opt Express, 2010, 18(25): 26728-26743.

    [10] Yeom D I, Magi E C, Lamont M R E, et al.. Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires [J]. Opt Lett, 2008, 33(7): 660-662.

    [11] Ahmad R, Rochette M. Raman lasing in a chalcogenide microwire-based Fabry-Perot cavity [J]. Opt Lett, 2012, 37(21): 4549-4551.

    [12] Klein R M. Chalcogenide glasses as passive thin film structures for integrated optics [J]. Journal of Electronic Materials, 1974, 3(1): 79-99.

    [13] Bessonov A F, Gudzenko A I, Deryugin L N, et al.. Thin-film chalcogenide glass waveguide for medium infrared range [J]. Soviet Journal of Quantum Electronics, 1976, 6(10): 1248-1249.

    [14] Viens J F, Meneghini C, Villeneuve A, et al.. Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses [J]. J Lightwave Technol, 1999, 17(7): 1184-1191.

    [15] Grillet C, Smith C L C, Freeman D, et al.. Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires [J]. Opt Express, 2006, 14(3): 1070-1078.

    [16] Hu J, Tarasov V, Carlie N, et al.. Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides [J]. Opt Express, 2007, 15(19): 11798-11807.

    [17] Gai X, Madden S, Choi D Y, et al.. Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W-1m-1 at 1550 nm [J]. Opt Express, 2010, 18(18): 18866-18874.

    [18] Gai X, Wang R P, Xiong C, et al.. Near-zero anomalous dispersion Ge11.5As24Se64.5 glass nanowires for correlated photon pair generation: design and analysis [J]. Opt Express,2012, 20(2): 776-786.

    [19] Gai X, Choi D Y, Madden S, et al.. Polarization-independent chalcogenide glass nanowires with anomalous dispersion for all-optical processing [J]. Opt Express, 2012, 20(12): 13513-13521.

    [20] Magi E C, Fu L B, Nguyen H C, et al.. Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers [J]. Opt Express, 2007, 15(16): 10324-10329.

    [21] Zhang Q, Li M, Hao Q, et al.. Fabrication and characterization of on-chip optical nonlinear chalcogenide nanofiber devices [J]. Opt Lett, 2010, 35(22): 3829-3831.

    [22] Baker C, Rochette M. Highly nonlinear hybrid AsSe-PMMA microtapers [J]. Opt Express, 2010, 18(12): 12391-12398.

    [23] Velazquez-Benitez A, Ahmad R, North T, et al.. All-optical broadband variable optical attenuator based on an As2Se3 microwire [J]. IEEE Photon Technol Lett, 2013, 25(7): 697-700.

    [24] Vahala K J. Optical microcavities [J]. Nature, 2003, 424(6950): 839-846.

    [25] Elliott G R, Hewak D W, Murugan G S, et al.. Chalcogenide glass microspheres; their production, characterization and potential [J]. Opt Express, 2007, 15(26): 17542-17553.

    [26] Grillet C, Bian S N, Magi E C, et al.. Fiber taper coupling to chalcogenide microsphere modes [J]. Appl Phys Lett, 2008, 92(17): 171109.

    [27] Akbulut D, Tulek A, Bayindir M. Generation of new frequencies in toroid microcavities [C]. ICTON 2008, 260-263.

    [28] Hu J, Carlie N, Feng N N, et al.. Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing [J]. Opt Lett, 2008, 33(21): 2500-2502.

    [29] Hu J, Carlie N, Petit L, et al.. Demonstration of chalcogenide glass racetrack microresonators [J]. Opt Lett, 2008, 33(8): 761-763.

    [30] Solmaz M E, Adams D B, Tan W C, et al.. Vertically integrated As2S3 ring resonator on LiNbO3 [J]. Opt Lett, 2009, 34(11): 1735-1737.

    [31] Elliott G R, Murugan G S, Wilkinson J S, et al.. Chalcogenide glass microsphere laser [J]. Opt Express, 2010, 18(25): 26720-26727.

    [32] Zhou Y, Xin X, Snider W T, et al.. Two-stage taper enhanced ultra-high Q As2S3 ring resonator on LiNbO3 [J]. Photon Technol Lett, 2011, 23(17): 1195-1197.

    [33] Luan F, Magi E, Gong T, et al.. Photoinduced whispering gallery mode microcavity resonator in a chalcogenide microfiber [J]. Opt Lett, 2011, 36(24): 4761-4763.

    [34] Vanier F, Bianucci P, Godbout N, et al.. As2S3 microspheres with near absorption-limited quality factor [C]. ICOMN, 2012, 45-46.

    [35] Li Chaoran, Wu Yuehao, Dai Shixun, et al.. Cavity quantum electrodynamic fluorescence enhancement effect of Nd3 +-doped chalcogenide glass microspheres [J]. Acta Optica Sinica, 2014, 34(2): 0223001.

    [36] Lu Laiwei, Wu Yuehao, Li Chaoran, et al.. Excitation of fluorescence whispering gallery modes in a taper-chalcogenide microsphere coupling system with a large refractive index difference pumped by an 808 nm laser diode [J]. Acta Photonica Sinica, 2014, 43(7): 0730002.

    [37] Lü Sheqin, Wu Yuehao, Lu Laiwei, et al.. Fluorescent characteristics of Er3 + doped chalcogenide glass microsphere under 980 nm LD pumping [J]. Chinese Journal of Luminescence, 2014, 35(4): 454-459.

    [38] Ruan Y, Li W, Jarvis R, et al.. Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching [J]. Opt Express, 2004, 12(21): 5140-5145.

    [39] Hu J, Feng N N, Carlie N, et al.. Low-loss high-index-contrast planar waveguides with graded-index cladding layers [J]. Opt Express, 2007, 15(22): 14566-14572.

    [40] Brambilla G, Xu F, Horak P, et al.. Optical fiber nanowires and microwires: fabrication and applications [J]. Advances in Optics and Photonics, 2009, 1(1): 107-161.

    [41] Vienne G, Coillet A, Grelu P, et al.. Demonstration of a reef knot microfiber resonator [J]. Opt Express, 2009, 17(8): 6224-6229.

    [42] Dai Shixun, Lu Laiwei, T Guangming, et al.. Research progress of glass micosphere for optical microcavity [J]. Laser & Optoelectronics Progress, 2012, 49(8): 080001.

    [43] Broaddus D H, Foster M A, Agha I H, et al.. Silicon-waveguide-coupled high-Q chalcogenide microspheres [J]. Opt Express, 2009, 17(8): 5998-6003.

    [44] Pengfei W, Senthil Murugan G, Brambilla G, et al.. Chalcogenide microsphere fabricated from fiber tapers using contact with a high-temperature ceramic surface [J]. Photon Technol Lett, 2012, 24(13): 1103-1105.

    [45] Armani D K, Kippenberg T J, Spillane S M, et al.. Ultra-high-Q toroid microcavity on a chip [J]. Nature, 2003, 421(6926): 925-928.

    [46] Chaudhari C, Suzuki T, Ohishi Y. Design of zero chromatic dispersion chalcogenide As2S3 glass nanofibers [J]. J Lightwave Technol, 2009, 27(12): 2095-2099.

    [47] Hudson D D, Magi E C, Judge A C, et al.. Highly nonlinear chalcogenide glass micro/nanofiber devices: design, theory, and octave-spanning spectral generation [J]. Opt Commun, 2012, 285(23): 4660-4669.

    [48] Ta'eed V, Baker N J, Fu L, et al.. Ultrafast all-optical chalcogenide glass photonic circuits [J]. Opt Express, 2007, 15(15): 9205-9221.

    [49] Al-kadry A, Baker C, El Amraoui M, et al.. Broadband supercontinuum generation in As2Se3 chalcogenide wires by avoiding the two-photon absorption effects [J]. Opt Lett, 2013, 38(7): 1185-1187.

    [50] Al Tal F, Dimas C, Hu J, et al.. Simulation of an erbium-doped chalcogenide micro-disk mid-infrared laser source [J]. Opt Express, 2011, 19(13): 11951-11962.

    [51] Tanaka K, Toyosawa N, Hisakuni H. Photoinduced Bragg gratings in As2S3 optical fibers [J]. Opt Lett, 1995, 20(19): 1976-1978.

    [52] Baker N J, Lee H W, Littler I C, et al.. Sampled Bragg gratings in chalcogenide As2S3 rib-waveguides [J]. Opt Express, 2006, 14(20): 9451-9459.

    [53] Ahmad R, Rochette M, Baker C. Fabrication of Bragg gratings in subwavelength diameter As2Se3 chalcogenide wires [J]. Opt Letters, 2011, 36(15): 2886-2888.

    CLP Journals

    [1] Wang Yingying, Dai Shixun, Luo Baohua, Zhang Peiqing, Wang Xunsi, Liu Zijun. Progress in Infrared Supercontinuum Generation in Chalcogenide Glass Fibers[J]. Laser & Optoelectronics Progress, 2016, 53(9): 90005

    Li Chaoran, Dai Shixun, Wu Yuehao, Zhang Peiqing, Lü Sheqin, Shen Xiang, Wang Xunsi. Research Progress of Chalcogenide Glass Based Micro-Nano Photonic Devices[J]. Laser & Optoelectronics Progress, 2015, 52(2): 20005
    Download Citation