• Chinese Optics Letters
  • Vol. 20, Issue 6, 061601 (2022)
Oksana Semenova1、*, Aleksei Sosunov1, Nikolai Prokhorov1, and Roman Ponomarev1、2
Author Affiliations
  • 1Department of Nanotechnology and Microsystems Engineering, Perm State University, Perm 614990, Russia
  • 2Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm 614990, Russia
  • show less
    DOI: 10.3788/COL202220.061601 Cite this Article Set citation alerts
    Oksana Semenova, Aleksei Sosunov, Nikolai Prokhorov, Roman Ponomarev. Temperature dependence of LiNbO3 dislocation density in the near-surface layer[J]. Chinese Optics Letters, 2022, 20(6): 061601 Copy Citation Text show less
    References

    [1] A. Boes, B. Corcoran, L. Chang, J. Bowers, A. Mitchell. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photonics Rev., 12, 1700256(2018).

    [2] K. Noguchi. Broadband Optical Modulators: Science, Technology, and Applications(2012).

    [3] M. N. Armenise, C. Ciminelli, F. Dell’ Olio, V. M. N. Passaro. Advances in Gyroscope Technologies(2011).

    [4] A. V. Turutin, J. V. Vidal, I. V. Kubasov, A. M. Kislyuk, D. A. Kiselev, M. D. Malinkovich, Y. N. Parkhomenko, S. P. Kobeleva, A. L. Kholkin, N. A. Sobolev. Highly sensitive magnetic field sensor based on a metglas/bidomain lithium niobate composite shaped in form of a tuning fork. J. Magn. Magn. Mater., 486, 165209(2019).

    [5] P. Chaudhary, H. Lu, A. Lipatov, Z. Ahmadi, J. P. V. McConville, A. Sokolov, J. E. Shield, A. Sinitskii, J. M. Gregg, A. Gruverman. Low-voltage domain-wall LiNbO3 memristors. Nano Lett., 20, 5873(2020).

    [6] D. Sun, Y. Zhang, D. Wang, W. Song, X. Liu, J. Pang, D. Geng, Y. Sang, H. Liu. Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications. Light Sci. Appl., 9, 197(2020).

    [7] B. Zhang, L. Wang, F. Chen. Recent advances in femtosecond laser processing of LiNbO3 crystals for photonic applications. Laser Photonic Rev., 14, 1900407(2020).

    [8] L. Carletti, A. Zilli, F. Moia, A. Toma, M. Finazzi, C. Angelis, D. N. Neshev, M. Celebrano. Steering and encoding the polarization of the second harmonic in the visible with a monolithic LiNbO3 metasurface. ACS Photonics, 8, 731(2021).

    [9] W. Lu, Z. Gao, X. Liu, X. Tian, Q. Wu, C. Li, Y. Sun, Y. Liu, X. Tao. Rational design of a LiNbO3-like nonlinear optical crystal, Li2ZrTeO6, with high laser-damage threshold and wide mid-IR transparency window. J. Am. Chem. Soc., 140, 13089(2018).

    [10] S. Sanna, G. Schmidt. LiNbO3 surfaces from a microscopic perspective. J. Phys. Condens. Matter., 29, 413001(2017).

    [11] R. Bhatt, I. Bhaumik, S. Ganesamoorthy, R. Bright, M. Soharab, A. K. Karnal, P. K. Gupta. Control of intrinsic defects in lithium niobate single crystal for optoelectronic applications. Crystals, 7, 23(2017).

    [12] P. Galinetto, M. Marinone, D. Grando, G. Samoggia, F. Caccavale, A. Morbiato, M. Musolino. Micro-Raman analysis on LiNbO3 substrates and surfaces: compositional homogeneity and effects of etching and polishing processes on structural properties. Opt. Lasers Eng., 45, 380(2007).

    [13] M. Gruber, A. Leitner, D. Kiener, P. Supancic, R. Bermejo. Incipient plasticity and surface damage in LiTaO3 and LiNbO3 single crystals. Mater. Des., 153, 221(2018).

    [14] A. V. Sosunov, A. B. Volyntsev, K. B. Tsiberkin, V. A. Yuriev, R. S. Ponomarev. Features of structure and mechanical properties LiNbO3. Ferroelectrics, 506, 24(2017).

    [15] J. Piecha, A. Molak, U. Breuer, M. Balski, K. Szot. Features of surface layer of LiNbO3 as-received single crystals: studied in situ on treatment samples modified by elevated temperature. Solid State Ion., 290, 31(2016).

    [16] A. A. Anikiev, N. V. Sidorov, M. N. Palatnikov, M. F. Umarov, E. N. Anikieva. Parametrization of nonstoichiometric lithium niobate crystals with different states of defectivity. Opt. Mater., 111, 110729(2021).

    [17] A. Sosunov, R. Ponomarev, O. Semenova, I. Petukhov, A. Volyntsev. Effect of pre-annealing of lithium niobate on the structure and optical characteristics of proton-exchanged waveguides. Opt. Mater., 88, 176(2019).

    [18] Ya. A. Kosenok, V. E. Gaishun, O. I. Tyulenkova, V. G. Denisman. Aqueous compositions based on nanosized silica particles for chemical-mechanical polishing of silicon wafers. PFMT, 3, 26(2014).

    [19] Y. Li, J. Lu, X. Xu. Phase transformation of monocrystalline silicon induced by polishing with diamond abrasives. IEEE Trans. Semicon. Manuf., 28, 153(2015).

    [20] Ya. A. Kosenok, V. E. Gaishun, O. I. Tyulenkova. Investigation of the near-surface damaged layer in monocrystalline silicon wafers after chemical-mechanical polishing. PFMT, 4, 25(2018).

    [21] Y. Li, T. Lan, D. Yang, M. Xiang, J. Dai, Z. Wang, C. Li. Research of selective etching in LiNbO3 using proton-exchanged wet etching technique. Mater. Res. Express, 7, 056202(2020).

    [22] M. Leidinger, K. Buse, I. Breunig. Influence of dry-oxygen-annealing on the residual absorption of lithium niobate crystals in the spectral range from 500 to 2900 nanometers. Opt. Mater. Express, 6, 264(2016).

    [23] T. Volk, M. Wohlecke. Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching(2008).

    [24] Z. W. Zhong. Recent advances in polishing of advanced materials. Mater. Manuf. Process., 23, 449(2008).

    [25] K. Nassau, H. J. Levinstein, G. M. Loiacono. Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching. J. Phys. Chem. Solids, 27, 983(1966).

    [26] Z. G. Pinsker. Dynamical Scattering of X-Rays in Crystals(1978).

    [27] A. N. Ivanov, P. Klimanek, A. M. Polyakov. Extinction study of dislocations (Bragg diffraction). Mater. Sci. Forum, 321–324, 87(2000).

    [28] A. Nakamura, J. Nakamura, I. Kishida, Y. Yokogawa. Dislocation structure at a {1¯21¯0}/〈101¯0〉 low-angle tilt grain boundary in LiNbO3. J. Mater Sci., 47, 5086(2012).

    [29] K. Sangval. Etching of Crystals: Theory, Experiment, and Application(1987).

    [30] J. Zhao, X. Jiao, Y. Ren, J. Gu, S. Wang, M. Bu, L. Wang. Lithium niobate planar and ridge waveguides fabricated by 3 MeV oxygen ion implantation and precise diamond dicing. Chin. Opt. Lett., 19, 060009(2021).

    Data from CrossRef

    [1] Mengyuan Li, Lan Rao, Xiaoying He, Feng Tian, Xiaolong Pan, Xiangjun Xin. Low-loss, broadband MMI coupler based on thin film lithium niobate platform. Physica Scripta, 98, 035506(2023).

    Oksana Semenova, Aleksei Sosunov, Nikolai Prokhorov, Roman Ponomarev. Temperature dependence of LiNbO3 dislocation density in the near-surface layer[J]. Chinese Optics Letters, 2022, 20(6): 061601
    Download Citation