• Laser & Optoelectronics Progress
  • Vol. 59, Issue 11, 1114001 (2022)
Yunsen Sun1, Yang Han2, Yi Zhang2, Longzao Zhou1, Dejian Liu1, and Xianhui Gao3、*
Author Affiliations
  • 1State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei , China
  • 2China Construction Third Bureau First Engineering Co., Ltd., Wuhan 430038, Hubei , China
  • 3Analytical and Testing Center, Huazhong University of Science and Technology, Wuhan 430074, Hubei , China
  • show less
    DOI: 10.3788/LOP202259.1114001 Cite this Article Set citation alerts
    Yunsen Sun, Yang Han, Yi Zhang, Longzao Zhou, Dejian Liu, Xianhui Gao. Microstructure of 304 Stainless Steel Fabricated by Laser Cladding[J]. Laser & Optoelectronics Progress, 2022, 59(11): 1114001 Copy Citation Text show less
    Laser cladding equipments. (a) YSL-4000 fiber laser; (b) KR-60HA six-axis robot; (c) DPSF-2 powder feeder
    Fig. 1. Laser cladding equipments. (a) YSL-4000 fiber laser; (b) KR-60HA six-axis robot; (c) DPSF-2 powder feeder
    Morphologies of 304 stainless steel powder. (a) Low magnification; (b) high magnification
    Fig. 2. Morphologies of 304 stainless steel powder. (a) Low magnification; (b) high magnification
    Typical morphologies of 304 stainless steel by laser cladding under laser power of 2200 W, scanning speed of 0.8 m /min, and powder feeding rate of 13 g/min.(a) Physical image of single-pass cladding layer; (b) cross-sectional metallographic image of cladding layer; microstructural metallographic images of cladding layer at (c) bottom region, (d) middle region, and (e) top region
    Fig. 3. Typical morphologies of 304 stainless steel by laser cladding under laser power of 2200 W, scanning speed of 0.8 m /min, and powder feeding rate of 13 g/min.(a) Physical image of single-pass cladding layer; (b) cross-sectional metallographic image of cladding layer; microstructural metallographic images of cladding layer at (c) bottom region, (d) middle region, and (e) top region
    Microstructural morphologies and main element distributions of cladding layer. (a) Secondary electron map; (b) backscattered electron map; (c)-(h) EDS scanning maps
    Fig. 4. Microstructural morphologies and main element distributions of cladding layer. (a) Secondary electron map; (b) backscattered electron map; (c)-(h) EDS scanning maps
    Morphologies of banded microstructure. (a) (b) SEM maps; (c) (d) STEM maps
    Fig. 5. Morphologies of banded microstructure. (a) (b) SEM maps; (c) (d) STEM maps
    XRD spectrum of cladding layer
    Fig. 6. XRD spectrum of cladding layer
    Microstructural EDS analysis of cladding layer in TEM environment
    Fig. 7. Microstructural EDS analysis of cladding layer in TEM environment
    Schematic of solidification of 304 stainless steel cladding layer
    Fig. 8. Schematic of solidification of 304 stainless steel cladding layer
    Selected area electron diffraction analysis of typical phase in cladding layer
    Fig. 9. Selected area electron diffraction analysis of typical phase in cladding layer
    ElementCCrNiMnSiSPFe
    Mass fraction /%≤0.0817.00-19.008.00-11.00≤2.00≤1.00≤0.03≤0.04Bal.
    Table 1. Chemical compositions of 304 stainless steel powder
    Yunsen Sun, Yang Han, Yi Zhang, Longzao Zhou, Dejian Liu, Xianhui Gao. Microstructure of 304 Stainless Steel Fabricated by Laser Cladding[J]. Laser & Optoelectronics Progress, 2022, 59(11): 1114001
    Download Citation