• Photonics Research
  • Vol. 12, Issue 10, 2178 (2024)
Zhiqiang Quan1,2 and Jian Wang1,2,*
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2Optics Valley Laboratory, Wuhan 430074, China
  • show less
    DOI: 10.1364/PRJ.525448 Cite this Article Set citation alerts
    Zhiqiang Quan, Jian Wang, "Photonic crystal topological interface state modulation for nonvolatile optical switching," Photonics Res. 12, 2178 (2024) Copy Citation Text show less
    References

    [1] W. Bogaerts, D. Pérez, J. Capmany. Programmable photonic circuits. Nature, 586, 207-216(2020).

    [2] Y. Shen, N. C. Harris, S. Skirlo. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441-446(2017).

    [3] F. Ashtiani, A. J. Geers, F. Aflatouni. An on-chip photonic deep neural network for image classification. Nature, 606, 501-506(2022).

    [4] H. H. Zhu, J. Zou, H. Zhang. Space-efficient optical computing with an integrated chip diffractive neural network. Nat. Commun., 13, 1044(2022).

    [5] X. Xu, M. Tan, B. Corcoran. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature, 589, 44-51(2021).

    [6] C. D. Wright, H. Bhaskaran, W. H. P. Pernice. Integrated phase-change photonic devices and systems. MRS Bull., 44, 721-727(2019).

    [7] B. J. Shastri, A. N. Tait, T. Ferreira de Lima. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics, 15, 102-114(2021).

    [8] D. Wu, X. Yang, N. Wang. Resonant multilevel optical switching with phase change material GST. Nanophotonics, 11, 3437-3446(2022).

    [9] X. Yang, L. Lu, Y. Li. Non-volatile optical switch element enabled by low-loss phase change material. Adv. Funct. Mater., 33, 2304601(2023).

    [10] N. Farmakidis, N. Youngblood, X. Li. Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality. Sci. Adv., 5, eaaw2687(2019).

    [11] W. Li, X. Cao, S. Song. Ultracompact high-extinction-ratio nonvolatile on-chip switches based on structured phase change materials. Laser Photonics Rev., 16, 2100717(2022).

    [12] C. Zhang, M. Wei, J. Zheng. Nonvolatile multilevel switching of silicon photonic devices with In2O3/GST segmented structures. Adv. Opt. Mater., 11, 2202748(2023).

    [13] J. Zheng, Z. Fang, C. Wu. Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater. Adv. Mater., 32, 2001218(2020).

    [14] Z. Cheng, C. Ríos, W. H. P. Pernice. On-chip photonic synapse. Sci. Adv., 3, e1700160(2017).

    [15] R. Chen, Z. Fang, J. E. Fröch. Broadband nonvolatile electrically controlled programmable units in silicon photonics. ACS Photonics, 9, 2142-2150(2022).

    [16] X. Yang, M. S. Nisar, W. Yuan. Phase change material enabled 2 × 2 silicon nonvolatile optical switch. Opt. Lett., 46, 4224-4227(2021).

    [17] Q. Wang, E. T. F. Rogers, B. Gholipour. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics, 10, 60-65(2015).

    [18] J. Tian, H. Luo, Y. Yang. Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5. Nat. Commun., 10, 396(2019).

    [19] B. Gholipour, J. Zhang, K. F. MacDonald. An all-optical, non-volatile, bidirectional, phase-change meta-switch. Adv. Mater., 25, 3050-3054(2013).

    [20] C. R. de Galarreta, A. M. Alexeev, Y. Y. Au. Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared. Adv. Funct. Mater., 28, 1704993(2018).

    [21] S. G. C. Carrillo, L. Trimby, Y. Y. Au. A nonvolatile phase-change metamaterial color display. Adv. Opt. Mater., 7, 1801782(2019).

    [22] H. Zhang, B. Huang, Z. Zhang. On-chip photonic synapses based on slot-ridge waveguides with PCMs for in-memory computing. IEEE Photonics J., 13, 2200213(2021).

    [23] Z. Quan, Y. Wan, X. Ma. Nonvolatile multi-level adjustable optical switch based on the phase change material. Opt. Express, 30, 36096-36109(2022).

    [24] M. Rudé, R. E. Simpson, R. Quidant. Active control of surface plasmon waveguides with a phase change material. ACS Photonics, 2, 669-674(2015).

    [25] Z. Quan, Y. Wan, J. Wang. On-chip ultra-compact nonvolatile photonic synapse. Appl. Phys. Lett., 121, 171102(2022).

    [26] C. Wu, H. Yu, S. Lee. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nat. Commun., 12, 96(2021).

    [27] J. Faneca, T. D. Bucio, F. Y. Gardes. O-band N-rich silicon nitride MZI based on GST. Appl. Phys. Lett., 116, 093502(2020).

    [28] C. Wu, H. Yu, H. Li. Low-loss integrated photonic switch using subwavelength patterned phase change material. ACS Photonics, 6, 87-92(2018).

    [29] J. Zheng, A. Khanolkar, P. Xu. GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform. Opt. Mater. Express, 8, 1551-1561(2018).

    [30] Y. Zhang, J. B. Chou, J. Li. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nat. Commun., 10, 4279(2019).

    [31] Z. Lan, M. L. N. Chen, F. Gao. A brief review of topological photonics in one, two, and three dimensions. Rev. Phys., 9, 100076(2022).

    [32] X. Yin, J. Jin, M. Soljačić. Observation of topologically enabled unidirectional guided resonances. Nature, 580, 467-471(2020).

    [33] Z. Wang, Y. Chong, J. D. Joannopoulos. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature, 461, 772-775(2009).

    [34] R. Zhou, M. L. N. Chen, X. Shi. Protected transverse electric waves in topological dielectric waveguides. IEEE Trans. Antennas Propag., 72, 2058-2063(2024).

    [35] M. Xiao, Z. Q. Zhang, C. T. Chan. Surface impedance and bulk band geometric phases in one-dimensional systems. Phys. Rev. X, 4, 021017(2014).