• Photonic Sensors
  • Vol. 10, Issue 4, 364 (2020)
Muhammad Shemyal NISAR1, Yujun CUI1, Kaitong DANG1, Liyong JIANG2, and Xiangwei ZHAO1、*
Author Affiliations
  • 1State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
  • 2Department of Physics, School of Science, Nanjing University of Science and Technology, Nanjing 210094, China
  • show less
    DOI: 10.1007/s13320-020-0593-2 Cite this Article
    Muhammad Shemyal NISAR, Yujun CUI, Kaitong DANG, Liyong JIANG, Xiangwei ZHAO. Near-Field Spot for Localized Light-Excitation of a Single Fluorescent Molecule[J]. Photonic Sensors, 2020, 10(4): 364 Copy Citation Text show less
    References

    [1] T. Miyake, T. Tanii, H. Sonobe, R. Akahori, N. Shimamoto, T. Ueno, et al., “Real-time imaging of single-molecule fluorescence with a zero-mode waveguide for the analysis of protein-protein interaction,” Analytical Chemistry, 2008, 80(15): 6018–6022.

    [2] K. T. Samiee, M. Foquet, L. Guo, E. C. Cox, and H. G. Craighead, “λ-repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides,” Biophysical Journal, 2005, 88(3): 2145–2153.

    [3] A. A. Al Balushi and R. Gordon, “A label-free untethered approach to single-molecule protein binding kinetics,” Nano Letters, 2014, 14(10): 5787–5791.

    [4] W. K. Ridgeway, D. P. Millar, and J. R. Williamson, “Quantitation of ten 30s ribosomal assembly intermediates using fluorescence triple correlation spectroscopy,” Proceedings of the National Academy of Sciences, 2012, 109(34): 13614–13619.

    [5] E. Kim, M. D. Baaske, I. Schuldes, P. S. Wilsch, and F. Vollmer, “Label-free optical detection of single enzyme-reactant reactions and associated conformational changes,” Science Advances, 2017, 3(3): e1603044.

    [6] S. Picelli, O. R. Faridani, A. K. Bjorklund, G. Winberg, S. Sagasser, and R. Sandberg, “Full-length RNA-seq from single cells using sart-seq2,” Nature Protocols, 2014, 9(1): 171–181.

    [7] C. Gawad, W. Koh, and S. R. Quake, “Single-cell genome sequencing: current state of the science,” Nature Reviews Genetics, 2016, 17(3): 175–188.

    [8] M. A. Walling, J. A. Novak, and J. R. E. Shepard, “Quantum dots for live cell and in vivo imaging,” International Journal of Molecular Sciences, 2009, 10(2): 441–491.

    [9] S. L. Diedenhofen, D. Kufer, T. Lasanta, and G. Konstantatos, “Integrated colloidal quantum dot photodetectors with color-tunable plasmonic nanofocusing lenses,” Light: Science and Applications, 2015, 4(1): e234.

    [10] M. Zampieri, K. Sekar, N. Zamboni, and U. Sauer, “Frontiers of high-throughput metabolomics,” Current Opinion in Chemical Biology, 2017, 36: 15–23.

    [11] C. Dincer, R. Bruch, A. Kling, P. S. Dittrich, and G. A. Urban, Multiplexed point-of-care testing–xPOCT,” Trends in Biotechnology, 2017, 35(8): 728–742.

    [12] Y. Kozawa, D. Matsunaga, and S. Sato, “Superresolution imaging via superoscillation focusing of a radially polarized beam,” Optica, 2018, 5(2): 86–92.

    [13] H. Hasegawa, “Laser scanning confocal microscopy,” Kobunshi, 2006, 55(12): 961–965.

    [14] K. N. Fish, “Total internal reflection fluorescence (TIRF) microscopy,” Current Protocols in Cytometry, 2009, 50(1): 12.18.1–12.18.13.

    [15] A. Trache and G. A. Meininger, Total internal reflection fluorescence (TIRF) microscopy: current protocols in microbiology, Chapter 2. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008.

    [16] H. M. Grandin, B. St-dler, M. Textor, and J. V-r-s, “Waveguide excitation fluorescence microscopy: a new tool for sensing and imaging the biointerface,” Biosensors and Bioelectronics, 2006, 21(8): 1476–1482.

    [17] A. Hassanzadeh and D. Azami, “Waveguide evanescent field fluorescence microscopy: theoretical investigation of optical pressure on a cell,” Journal of Nanophotonics, 2014, 8(1): 083076.

    [18] P. T. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annual Review of Biomedical Engineering, 2000, 2(1): 399–429.

    [19] H. Blom and J. Widengren, “Stimulated emission depletion microscopy,” Chemical Reviews, 2017, 117(11): 7377–7427.

    [20] U. Dürig, D. W. Pohl, and F. Rohner, “Near-field optical-scanning microscopy,” Journal of Applied Physics, 1986, 59(10): 3318–3327.

    [21] N. C. Lindquist, J. Jose, S. Cherukulappurath, X. Chen, T. W. Johnson, and S. H. Oh, “Tip-based plasmonics: squeezing light with metallic nanoprobes,” Laser and Photonics Reviews, 2013, 7(4): 453–477.

    [22] J. T. Hugall, A. Singh, and N. F. Van Hulst, “Plasmonic cavity coupling,” ACS Photonics, 2018, 5(1): 43–53.

    [23] A. Gopinath, E. Miyazono, A. Faraon, and P. W. K. Rothemund, “Engineering and mapping nanocavity emission via precision placement of DNA origami,” Nature, 2016, 535(7612): 401–405.

    [24] J. M. Moran-Mirabal and H. G. Craighead, “Zero-mode waveguides: sub-wavelength nanostructures for single molecule studies at high concentrations,” Methods, 2008, 46(1): 11–17.

    [25] T. Plénat, S. Yoshizawa, and D. Fourmy, “DNA-guided delivery of single molecules into zero-mode waveguides,” ACS Applied Materials and Interfaces, 2017, 9(36): 30561–30566.

    [26] T. Auger, J. Mathé, V. Viasnoff, G. Charron, J. M. Di Meglio, L. Auvray, et al., “Zero-mode waveguide detection of flow-driven DNA translocation through nanopores,” Physical Review Letters, 2014, 113(2): 028302.

    [27] M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science, 2003, 299(5607): 682–686.

    [28] C. I. Richards, K. Luong, R. Srinivasan, S. W. Turner, D. A. Dougherty, J. Korlach, et al., “Live-cell imaging of single receptor composition using zero-mode waveguide nanostructures,” Nano Letters, 2012, 12(7): 3690–3694.

    [29] Y. Morita, K. Fujimoto, R. Iino, M. Tomishige, H. Shintaku, H. Kotera, et al., “Single-molecule fluorescence imaging of kinesin using linear zero-mode waveguides,” in 2016 IEEE Sensors, USA, Oct. 30 – Nov. 3, 2016, pp: 1–3.

    [30] J. Larkin, R. Y. Henley, V. Jadhav, J. Korlach, and M. Wanunu, “Length-independent DNA packing into nanopore zero-mode waveguides for low-input DNA sequencing,” Nature Nanotechnology, 2017, 12(12): 1169–1175.

    [31] J. Eid, A. Fehr, J. Gray, K. Luong, J. Lyle, G. Otto, et al., “Real-time DNA sequencing from single polymerase molecules,” Science, 2009, 323(5910): 133–138.

    [32] D. Han, G. M. Crouch, K. Fu, L. P. Zaino, and P. W. Bohn, “Single-molecule spectroelectrochemical cross-correlation during redox cycling in recessed dual ring electrode zero-mode waveguides,” Chemical Science, 2017, 8(8): 5345–5355.

    [33] G. M. Crouch, D. Han, and P. W. Bohn, “Zero-mode waveguide nanophotonic structures for single molecule characterization,” Journal of Physics D: Applied Physics, 2018, 51(19): 193001.

    [34] L. P. Zaino, D. A. Grismer, D. Han, G. M. Crouch, and P. W. Bohn, “Single occupancy spectroelectrochemistry of freely diffusing flavin mononucleotide in zero-dimensional nanophotonic structures,” Faraday Discussions, 2015, 184(1): 101–115.

    [35] R. Gordon and A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Optics Express, 2005, 13(6): 1933–1938.

    [36] H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, et al., “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nature Photonics, 2012, 6(12): 838–844.

    [37] R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser and Photonics Reviews, 2010, 4(2): 311–335.

    Muhammad Shemyal NISAR, Yujun CUI, Kaitong DANG, Liyong JIANG, Xiangwei ZHAO. Near-Field Spot for Localized Light-Excitation of a Single Fluorescent Molecule[J]. Photonic Sensors, 2020, 10(4): 364
    Download Citation