• Laser & Optoelectronics Progress
  • Vol. 56, Issue 7, 070006 (2019)
Zhiwei Wei, Meng Liu, Hu Cui, Aiping Luo, Wencheng Xu, and Zhichao Luo*
Author Affiliations
  • Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices & Guangzhou Key Laboratory for Special Fiber Photonic Devices and Applications, South China Normal University, Guangzhou, Guangdong 510006, China
  • show less
    DOI: 10.3788/LOP56.070006 Cite this Article Set citation alerts
    Zhiwei Wei, Meng Liu, Hu Cui, Aiping Luo, Wencheng Xu, Zhichao Luo. Recent Progress of Soliton Transient Dynamics in Ultrafast Fiber Lasers[J]. Laser & Optoelectronics Progress, 2019, 56(7): 070006 Copy Citation Text show less
    Principle diagram of DFT
    Fig. 1. Principle diagram of DFT
    Buildup dynamics of dissipative soliton. (a) Spatio-spectral characteristics; (b) spatio-temporal characteristics; (c) side view of spatio-temporal characteristics; (d) pulse energy evolution[26]
    Fig. 2. Buildup dynamics of dissipative soliton. (a) Spatio-spectral characteristics; (b) spatio-temporal characteristics; (c) side view of spatio-temporal characteristics; (d) pulse energy evolution[26]
    Buildup dynamics of conventional soliton. (a) Spatio-spectral characteristics; (b) spatio-temporal characteristics; (c) side view of spatio-temporal characteristics; (d) pulse energy evolution[27]
    Fig. 3. Buildup dynamics of conventional soliton. (a) Spatio-spectral characteristics; (b) spatio-temporal characteristics; (c) side view of spatio-temporal characteristics; (d) pulse energy evolution[27]
    Polarization-resolved measurement of polarization rotation vector soliton with period of eight roundtrips. (a) Pulse trains; (b) pulse trains after DFT; (c) (d) real-time spectra[35]
    Fig. 4. Polarization-resolved measurement of polarization rotation vector soliton with period of eight roundtrips. (a) Pulse trains; (b) pulse trains after DFT; (c) (d) real-time spectra[35]
    Pulsating soliton with chaotic behavior. (a) Spectrum from optical spectrum analyzer; (b) radio frequency (RF) spectrum; (c) autocorrelation trace; (d) pulse train; (e) real-time spectra, inset: energy evolution and typical single-shot spectrum; (f) spectra and energy evolution for 500 roundtrips[38]
    Fig. 5. Pulsating soliton with chaotic behavior. (a) Spectrum from optical spectrum analyzer; (b) radio frequency (RF) spectrum; (c) autocorrelation trace; (d) pulse train; (e) real-time spectra, inset: energy evolution and typical single-shot spectrum; (f) spectra and energy evolution for 500 roundtrips[38]
    Real-time spectra in regime of “successive soliton explosions” [41]
    Fig. 6. Real-time spectra in regime of “successive soliton explosions” [41]
    Experimental measurement results of soliton explosions in double-soliton regime. (a) (b) Temporal evolutions of solitons; (c) real-time spectral dynamics recorded by DFT technique; (d) energy evolution, inset is enlarged evolution for 400 roundtrips; (e)-(g) spectra for typical roundtrips[45]
    Fig. 7. Experimental measurement results of soliton explosions in double-soliton regime. (a) (b) Temporal evolutions of solitons; (c) real-time spectral dynamics recorded by DFT technique; (d) energy evolution, inset is enlarged evolution for 400 roundtrips; (e)-(g) spectra for typical roundtrips[45]
    Experimental observation of soliton molecular features. (a) Oscillating phase; (b) vibration; (d) divergent sliding phase; (c) temporal separation between two pulses [47]
    Fig. 8. Experimental observation of soliton molecular features. (a) Oscillating phase; (b) vibration; (d) divergent sliding phase; (c) temporal separation between two pulses [47]
    Buildup dynamics of multi-pulse mode-locking. (a) Spatio-temporal evolution of interfering multi-pulse mode-locking; (b) spatio-spectral evolution of interfering pulses iii; (c) spectral intensity correlation map of interfering pulses; (d) temporal separation evolution of interfering pulses[31]
    Fig. 9. Buildup dynamics of multi-pulse mode-locking. (a) Spatio-temporal evolution of interfering multi-pulse mode-locking; (b) spatio-spectral evolution of interfering pulses iii; (c) spectral intensity correlation map of interfering pulses; (d) temporal separation evolution of interfering pulses[31]
    Spatio-temporal intensity dynamics of four typical pulse trains in soliton explosion regime[55]
    Fig. 10. Spatio-temporal intensity dynamics of four typical pulse trains in soliton explosion regime[55]
    Zhiwei Wei, Meng Liu, Hu Cui, Aiping Luo, Wencheng Xu, Zhichao Luo. Recent Progress of Soliton Transient Dynamics in Ultrafast Fiber Lasers[J]. Laser & Optoelectronics Progress, 2019, 56(7): 070006
    Download Citation