• Journal of Inorganic Materials
  • Vol. 38, Issue 7, 839 (2023)
Xueyao WANG1, Wugang WANG2, Yingwei LI1、*, Qi PENG1, and Ruihong LIANG2、*
Author Affiliations
  • 11. School of Civil Engineering, Wuhan University, Wuhan 430072, China
  • 22. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • show less
    DOI: 10.15541/jim20220638 Cite this Article
    Xueyao WANG, Wugang WANG, Yingwei LI, Qi PENG, Ruihong LIANG. Correlation between Constitutive Behavior and Fracture Performance of PZT Ceramics[J]. Journal of Inorganic Materials, 2023, 38(7): 839 Copy Citation Text show less
    References

    [1] E AKSEL, J L JONES. Advances in lead-free piezoelectric materials for sensors and actuators. Sensors, 1935(2010).

    [2] J RODEL, K G WEBBER, R DITTMER et al. Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc., 1659(2015).

    [3] D DAMJANOVIC. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Physics, 1267(1998).

    [4] J RODEL, F LI. Lead-free piezoceramics: status and perspectives. MRS Bull., 576(2018).

    [5] G PISARENKO, S P KOVALEV, V M CHUSHKO. Fracture toughness of piezoelectric ceramics. Strength Mater., 1492(1980).

    [6] T RODIG, A SCHONECKER, G GERLACH. A survey on piezoelectric ceramics for generator applications. J. Am. Ceram. Soc., 901(2010).

    [7] J A GALLEGO-JUAREZ. Piezoelectric ceramics and ultrasonic transducers. J. Phys. E Sci. Instrum., 804(1989).

    [8] R A PFERNER, G THURN, F ALDINGER. Mechanical properties of PZT ceramics with tailored microstructure. Mater. Chem. Phys., 24(1999).

    [9] F X LI, D N FANG, A K SOH. Theoretical saturated domain- orientation states in ferroelectric ceramics. Scr. Mater., 1241(2006).

    [10] J M CALDERON-MORENO, M POPA. Fracture Toughness Anisotropy by Indentation and SEVNB on Tetragonal PZT Polycrystals(2001).

    [11] Y W LI, F X LI. Large anisotropy of fracture toughness in mechanically poled/depoled ferroelectric ceramics. Scr. Mater., 313(2010).

    [12] J M CALDERON-MORENO, F GUIU, M MEREDITH et al. Fracture toughness anisotropy of PZT. Mater. Sci. Eng. A, 1062(1997).

    [13] K MEHTA, A V VIRKAR. Fracture mechanisms in ferroelectric- ferroelastic lead zirconate titanate (Zr: Ti=0.54:0.46) ceramics. J. Am. Ceram. Soc., 567(1990).

    [14] SLDE LUCATO, DC LUPASCU, J RODEL. Effect of poling direction on R-curve behavior in lead zirconate titanate. J. Am. Ceram. Soc., 424(2000).

    [15] T FETT, A GLAZOUNOV, M J HOFFMANN et al. On the interpretation of different R-curves for soft PZT. Eng. Fract. Mech., 1207(2001).

    [16] Y H SEO, M VOGLER, D ISAIA et al. Temperature-dependent R-curve behavior of Pb(Zr1-xTix)O3. Acta Mater., 6418(2013).

    [17] G A SCHNEIDER. Influence of electric field and mechanical stresses on the fracture of ferroelectrics. Annu. Rev. Mater. Res., 491(2007).

    [18] Y W LI, Y LIU, P E OCHSNER et al. Temperature dependent fracture toughness of KNN-based lead-free piezoelectric ceramics. Acta Mater., 369(2019).

    [19] M KUNA. Fracture mechanics of piezoelectric materials-where are we right now?. Eng. Fract. Mech., 309(2010).

    [20] K G WEBBER, M VOGLER, N H KHANSUR et al. Review of the mechanical and fracture behavior of perovskite lead-free ferroelectrics for actuator applications. Smart Mater. Struct., 063001(2017).

    [21] S B KIM, D Y KIM, J J KIM et al. Effect of grain size and poling on the fracture mode of lead zirconate titanate ceramics. J. Am. Ceram. Soc., 161(1990).

    [22] O GUILLON, F THIEBAUD, D PERREUX et al. New considerations about the fracture mode of PZT ceramics. J. Am. Eur. Soc., 2421(2005).

    [23] J KUBLER. Fracture toughness of ceramics using the SEVNB method a joint VAMSA/ESIS round robin. Fract. Mech. Ceram., 437(2002).

    [24] J A SALEM. Fracture toughness of advanced ceramics at room temperature. J. Res. Natl. Inst. Stand. Technol., 579(1992).

    [25] M VOGLER, T FETT, J RODEL. Crack-tip toughness of lead-free (1-x)(Na1/2Bi1/2)TiO3-xBaTiO3 piezoceramics. J. Am. Ceram. Soc., 5304(2018).

    [26] F X LI, A K SOH. An optimization-based computational model for domain evolution in polycrystalline ferroelastics. Acta Mater., 2207(2010).

    [27] R BERMEJO, M DELUCA. Mechanical characterization of PZT ceramics for multilayer piezoelectric actuators. J. Ceram. Sci. Technol., 159(2012).

    [28] R BERMEJO, H GRUNBICHLER, J KREITH et al. Fracture resistance of a doped PZT ceramic for multilayer piezoelectric actuators: Effect of mechanical load and temperature. J. Eur. Ceram. Soc., 705(2010).

    [29] H JELITTO, H KEBLER, G A SCHNEIDER et al. Fracture behavior of poled piezoelectric PZT under mechanical and electrical loads. J. Eur. Ceram. Soc., 749(2005).

    [30] S M DENKHAUS, M VOGLER, N NOVK et al. Short crack fracture toughness in (1-x)(Na1/2Bi1/2)TiO3-xBaTiO3 relaxor ferroelectrics. J. Am. Ceram. Soc., 4760(2017).

    Xueyao WANG, Wugang WANG, Yingwei LI, Qi PENG, Ruihong LIANG. Correlation between Constitutive Behavior and Fracture Performance of PZT Ceramics[J]. Journal of Inorganic Materials, 2023, 38(7): 839
    Download Citation