• Laser & Optoelectronics Progress
  • Vol. 52, Issue 12, 121405 (2015)
[in Chinese]* and [in Chinese]
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop52.121405 Cite this Article Set citation alerts
    [in Chinese], [in Chinese]. Bending Deformation and Surface Characteristics of 2024 Aluminum Alloy Processed by Laser-Induced Shock Wave[J]. Laser & Optoelectronics Progress, 2015, 52(12): 121405 Copy Citation Text show less
    References

    [1] L Hackel, F Harris. Contour Forming of Metals by Laser Peening[P]. US patent: 6410884B1, 2002-06-25.

    [2] Zhang Qinglai, Wang Rong, Hong Yanxin, et al.. Study on laser shock forming and fracture behavior of metal sheet[J]. Chinese J Lasers, 2014, 41(4): 0403010.

    [3] Wang Fei, Yao Zhenqiang. Numerical simulation research on laser shock forming[J]. Journal of Shanghai Jiaotong University, 2006, 40(9): 1465-1468.

    [4] Ding Hua, Wang Yun, Cai Lan. Laser shock forming of aluminum sheet: Finite element analysis and experimental study[J]. Applied Surface Science, 2010(256): 1703-1707.

    [5] R Fabbro, P Peyre, L Berthe, et al.. Physics and applications of laser-shock processing[J]. Journal of laser applications, 1998, 10(6): 265-279.

    [6] Zeng Yuansong, Huang Xia, Li Zhiqiang. The application and development of advanced shot peen forming technologies[J]. Journal of Plasticity Engineering, 2006, 13(3): 23-29.

    [7] Zheng Chao, Sun Sheng, Ji Zhong, et al.. Microscale laser peen forming of sheet metal and its research situation[J]. Journal of Plasticity Engineering, 2009, 16(4): 59-67.

    [8] M Morales, J A Porro, J J Garcia-ballesteros, et al.. Effect of plasma confinement on laser shock microforming of thin metal sheets[J]. Applied Surface Science, 2001, 257: 5408-5412.

    [9] Zhou Jianzhong, Zhang Yongkang, Zhou Ming, et al.. Theoretical analysis on deformation of sheet metal under one laser shot loading[J]. Chinese J Lasers, 2005, 32(1): 135-138.

    [10] Xia Weiguang, Wu Xianqian, Wei Yanpeng, et al.. Mechanical properties of niti shape memory alloy processed by laser shock peening[J]. Chinese J Lasers, 2013, 40(11): 1103002.

    [11] Wang Xiao, Qiu Tangbiao, Gu Yuxuan, et al.. Micro-forming properties of Ti foil under laser indirect shock[J]. Optics and Precision Engineering, 2015, 23(3): 632-637.

    [12] Y X Hu, R V Grandhi. Efficient numerical prediction of residual stress and deformation for large-scale laser shock processing using the eigenstrain methodology[J]. Surface & Coatings Technology, 2012, 206: 3374-3385.

    [13] Cao Yupeng, Feng Aixin, Xue Wei, et al.. Experimental research and theoretical study of laser shock wave induced dynamic strain on 2024 aluminum alloy surface[J]. Chinese J Lasers, 2014, 41(9): 90-95.

    [14] H Murakawa, D Deng, S Rashed, et al.. Prediction of distortion produced on welded structures during assembly using inherent deformation and interface element[J]. Trans JWRI, 2009, 38(2): 63-69.

    [15] Y Wang, Y Fan, S Vukelic, et al.. Energy-level effects on the deformation mechanism in microscale laser peen forming[J]. Journal of Manufacturing Processes, 2007, 9(1): 1-12.

    CLP Journals

    [1] Huang Zhiwei, Zhang Xingquan, Zhang Yan, Pei Shanbao, Huang Zhilai, Chen Bin. Effect of boundary constraint conditions of thin plate on residual stresses and plastic deformation induced by laser shock peening[J]. Infrared and Laser Engineering, 2017, 46(8): 806009

    [2] Wang Caihong, Huang Lin, Liu Muhua, Chen Tianbing, Yang Hui, Yao Mingyin. Determination of Heavy Metal Chromium in Rice Husk by LIBS Coupled with SiPLS[J]. Laser & Optoelectronics Progress, 2016, 53(11): 113001

    [in Chinese], [in Chinese]. Bending Deformation and Surface Characteristics of 2024 Aluminum Alloy Processed by Laser-Induced Shock Wave[J]. Laser & Optoelectronics Progress, 2015, 52(12): 121405
    Download Citation