• Acta Optica Sinica
  • Vol. 44, Issue 10, 1026008 (2024)
Zhuo Wang1, Qiong He1、***, Shulin Sun2、**, and Lei Zhou1、*
Author Affiliations
  • 1Department of Physics, State Key Laboratory of Surface Physics, Shanghai Key Laboratory of Metasurface Light Field Manipulation, Fudan University, Shanghai 200433, China
  • 2Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China
  • show less
    DOI: 10.3788/AOS231991 Cite this Article Set citation alerts
    Zhuo Wang, Qiong He, Shulin Sun, Lei Zhou. Multifunctional Manipulation of Electromagnetic Waves Based on Composite-Phase Metasurfaces (Invited)[J]. Acta Optica Sinica, 2024, 44(10): 1026008 Copy Citation Text show less
    References

    [1] Yu Y Z, Dou W B. Generation of pseudo-Bessel beams at THz frequencies by use of binary axicons[J]. Optics Express, 17, 888-893(2009).

    [2] Squires A D, Constable E, Lewis R A. 3D printed terahertz diffraction gratings and lenses[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 36, 72-80(2015).

    [3] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 292, 77-79(2001).

    [4] Liu Y M, Zhang X. Metamaterials: a new Frontier of science and technology[J]. Chemical Society Reviews, 40, 2494-2507(2011).

    [5] Schurig D, Mock J J, Justice B J et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 314, 977-980(2006).

    [6] Leonhardt U. Optical conformal mapping[J]. Science, 312, 1777-1780(2006).

    [7] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 312, 1780-1782(2006).

    [8] Lai Y, Ng J, Chen H Y et al. Illusion optics: the optical transformation of an object into another object[J]. Physical Review Letters, 102, 253902(2009).

    [9] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [10] Yu N F, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials, 13, 139-150(2014).

    [11] Glybovski S B, Tretyakov S A, Belov P A et al. Metasurfaces: from microwaves to visible[J]. Physics Reports, 634, 1-72(2016).

    [12] Ding F, Pors A, Bozhevolnyi S I. Gradient metasurfaces: a review of fundamentals and applications[J]. Reports on Progress in Physics, 81, 026401(2018).

    [13] Chen H T, Taylor A J, Yu N F. A review of metasurfaces: physics and applications[J]. Reports on Progress in Physics, 79, 076401(2016).

    [14] He Q, Sun S L, Xiao S Y et al. High-efficiency metasurfaces: principles, realizations, and applications[J]. Advanced Optical Materials, 6, 1800415(2018).

    [15] Sun S L, He Q, Hao J M et al. Electromagnetic metasurfaces: physics and applications[J]. Advances in Optics and Photonics, 11, 380(2019).

    [16] Xu H X, Ma S J, Ling X H et al. Deterministic approach to achieve broadband polarization-independent diffusive scatterings based on metasurfaces[J]. ACS Photonics, 5, 1691-1702(2018).

    [17] Sun S L, He Q, Xiao S Y et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 11, 426-431(2012).

    [18] Sun S L, Yang K Y, Wang C M et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 12, 6223-6229(2012).

    [19] Sun W J, He Q, Sun S L et al. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations[J]. Light, Science & Applications, 5, e16003(2016).

    [20] Duan J W, Guo H J, Dong S H et al. High-efficiency chirality-modulated spoof surface plasmon meta-coupler[J]. Scientific Reports, 7, 1354(2017).

    [21] Aieta F, Genevet P, Kats M A et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, 12, 4932-4936(2012).

    [22] Li X, Xiao S Y, Cai B G et al. Flat metasurfaces to focus electromagnetic waves in reflection geometry[J]. Optics Letters, 37, 4940-4942(2012).

    [23] Khorasaninejad M, Chen W T, Devlin R C et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 352, 1190-1194(2016).

    [24] Cui T J, Qi M Q, Wan X et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 3, e218(2014).

    [25] Ren H R, Fang X Y, Jang J et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space[J]. Nature Nanotechnology, 15, 948-955(2020).

    [26] Luo W J, Xiao S Y, He Q et al. Photonic spin Hall effect with nearly 100% efficiency[J]. Advanced Optical Materials, 3, 1102-1108(2015).

    [27] Zheng G X, Mühlenbernd H, Kenney M et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 10, 308-312(2015).

    [28] Luo W J, Sun S L, Xu H X et al. Transmissive ultrathin Pancharatnam-Berry metasurfaces with nearly 100% efficiency[J]. Physical Review Applied, 7, 044033(2017).

    [29] Wen D D, Yue F Y, Li G X et al. Helicity multiplexed broadband metasurface holograms[J]. Nature Communications, 6, 8241(2015).

    [30] Wang Z, Dong S H, Luo W J et al. High-efficiency generation of Bessel beams with transmissive metasurfaces[J]. Applied Physics Letters, 112, 191901(2018).

    [31] Jia M, Wang Z, Li H T et al. Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces[J]. Light: Science & Applications, 8, 16(2019).

    [32] Wang S M, Wu P C, Su V C et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 13, 227-232(2018).

    [33] Lin R J, Su V C, Wang S M et al. Achromatic metalens array for full-colour light-field imaging[J]. Nature Nanotechnology, 14, 227-231(2019).

    [34] Chen W T, Zhu A Y, Sanjeev V et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 13, 220-226(2018).

    [35] Presutti F, Monticone F. Focusing on bandwidth: achromatic metalens limits[C](2020).

    [36] Wang S M, Wu P C, Su V C et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 8, 187(2017).

    [37] Balli F, Sultan M, Lami S K et al. A hybrid achromatic metalens[J]. Nature Communications, 11, 3892(2020).

    [38] Wang Y J, Chen Q M, Yang W H et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window[J]. Nature Communications, 12, 5560(2021).

    [39] Cai T, Wang G M, Tang S W et al. High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces[J]. Physical Review Applied, 8, 034033(2017).

    [40] Zhuang Y Q, Wang G M, Cai T et al. Design of bifunctional metasurface based on independent control of transmission and reflection[J]. Optics Express, 26, 3594-3603(2018).

    [41] Li X M, Chen J, Xi X et al. Broadband trifunctional metasurface and its application in a lens antenna[J]. Optics Express, 29, 23244-23257(2021).

    [42] Ding F, Deshpande R, Bozhevolnyi S I. Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence[J]. Light: Science & Applications, 7, 17178(2017).

    [43] Pors A, Nielsen M G, Bernardin T et al. Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons[J]. Light: Science & Applications, 3, e197(2014).

    [44] Cai T, Tang S W, Wang G M et al. High-performance bifunctional metasurfaces in transmission and reflection geometries[J]. Advanced Optical Materials, 5, 1600506(2017).

    [45] Maguid E, Yulevich I, Veksler D et al. Photonic spin-controlled multifunctional shared-aperture antenna array[J]. Science, 352, 1202-1206(2016).

    [46] Wen D D, Chen S M, Yue F Y et al. Metasurface device with helicity-dependent functionality[J]. Advanced Optical Materials, 4, 321-327(2016).

    [47] Balthasar Mueller J P, Rubin N A, Devlin R C et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 118, 113901(2017).

    [48] Zhang C, Divitt S, Fan Q B et al. Low-loss metasurface optics down to the deep ultraviolet region[J]. Light, Science & Applications, 9, 55(2020).

    [49] Wang Y, Yao Z Y, Cui Z J et al. Orbital angular momentum multiplexing holography based on multiple polarization channel metasurface[J]. Nanophotonics, 12, 4339-4349(2023).

    [50] Devlin R C, Ambrosio A, Rubin N A et al. Arbitrary spin-to-orbital angular momentum conversion of light[J]. Science, 358, 896-901(2017).

    [51] Yuan Y Y, Zhang K, Ratni B et al. Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces[J]. Nature Communications, 11, 4186(2020).

    [52] Tian S N, Guo H M, Hu J B et al. Dielectric longitudinal bifocal metalens with adjustable intensity and high focusing efficiency[J]. Optics Express, 27, 680-688(2019).

    [53] Jin R C, Tang L L, Li J Q et al. Experimental demonstration of multidimensional and multifunctional metalenses based on photonic spin Hall effect[J]. ACS Photonics, 7, 512-518(2020).

    [54] Zheng C L, Li J, Yue Z et al. All-dielectric trifunctional metasurface capable of independent amplitude and phase modulation[J]. Laser & Photonics Reviews, 16, 2200051(2022).

    [55] Fan Q B, Zhu W Q, Liang Y Z et al. Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible[J]. Nano Letters, 19, 1158-1165(2019).

    [56] Wang Z, Li S Q, Zhang X Q et al. Excite spoof surface plasmons with tailored wavefronts using high-efficiency terahertz metasurfaces[J]. Advanced Science, 7, 2000982(2020).

    [57] Chen Y Z, Zheng X Y, Zhang X Y et al. Efficient meta-couplers squeezing propagating light into on-chip subwavelength devices in a controllable way[J]. Nano Letters, 23, 3326-3333(2023).

    [58] Li S Q, Wang Z, Dong S H et al. Helicity-delinked manipulations on surface waves and propagating waves by metasurfaces[J]. Nanophotonics, 9, 3473-3481(2020).

    [59] Ma Z J, Hanham S M, Albella P et al. Terahertz all-dielectric magnetic mirror metasurfaces[J]. ACS Photonics, 3, 1010-1018(2016).

    [60] Decker M, Staude I, Falkner M et al. High-efficiency dielectric Huygens’ surfaces[J]. Advanced Optical Materials, 3, 813-820(2015).

    [61] Headland D, Carrasco E, Nirantar S et al. Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface[J]. ACS Photonics, 3, 1019-1026(2016).

    [62] Khorasaninejad M, Zhu A Y, Roques-Carmes C et al. Polarization-insensitive metalenses at visible wavelengths[J]. Nano Letters, 16, 7229-7234(2016).

    [63] Pancharatnam S. Generalized theory of interference, and its applications[J]. Proceedings of the Indian Academy of Sciences: Section A, 44, 247-262(1956).

    [64] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society A: Mathematical and Physical Sciences, 392, 45-57(1984).

    [65] Bomzon Z, Biener G, Kleiner V et al. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings[J]. Optics Letters, 27, 1141-1143(2002).

    [66] Shitrit N, Bretner I, Gorodetski Y et al. Optical spin Hall effects in plasmonic chains[J]. Nano Letters, 11, 2038-2042(2011).

    [67] Huang L L, Chen X Z, Mühlenbernd H et al. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Letters, 12, 5750-5755(2012).

    [68] Huo P C, Zhang C, Zhu W Q et al. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging[J]. Nano Letters, 20, 2791-2798(2020).

    [69] Fan Q B, Liu M Z, Zhang C et al. Independent amplitude control of arbitrary orthogonal states of polarization via dielectric metasurfaces[J]. Physical Review Letters, 125, 267402(2020).

    [70] Chen C, Gao S L, Song W G et al. Metasurfaces with planar chiral meta-atoms for spin light manipulation[J]. Nano Letters, 21, 1815-1821(2021).

    [71] Yin L Z, Huang T J, Han F Y et al. High-efficiency terahertz spin-decoupled meta-coupler for spoof surface plasmon excitation and beam steering[J]. Optics Express, 27, 18928-18939(2019).

    [72] Meng C, Tang S W, Ding F et al. Optical gap-surface plasmon metasurfaces for spin-controlled surface plasmon excitation and anomalous beam steering[J]. ACS Photonics, 7, 1849-1856(2020).

    [73] Xu H X, Han L, Li Y et al. Completely spin-decoupled dual-phase hybrid metasurfaces for arbitrary wavefront control[J]. ACS Photonics, 6, 211-220(2019).

    [74] Xu H X, Hu G W, Jiang M H et al. Multiplexed metasurfaces: wavevector and frequency multiplexing performed by a spin-decoupled multichannel metasurface[J]. Advanced Materials Technologies, 5, 2070005(2020).

    [75] Wang Z, Yao Y, Pan W K et al. Bifunctional manipulation of terahertz waves with high-efficiency transmissive dielectric metasurfaces[J]. Advanced Science, 10, 2205499(2023).

    [76] Xu Y H, Zhang H F, Li Q et al. Generation of terahertz vector beams using dielectric metasurfaces via spin-decoupled phase control[J]. Nanophotonics, 9, 3393-3402(2020).

    [77] Wang D Y, Liu T, Zhou Y J et al. High-efficiency metadevices for bifunctional generations of vectorial optical fields[J]. Nanophotonics, 10, 685-695(2020).

    Zhuo Wang, Qiong He, Shulin Sun, Lei Zhou. Multifunctional Manipulation of Electromagnetic Waves Based on Composite-Phase Metasurfaces (Invited)[J]. Acta Optica Sinica, 2024, 44(10): 1026008
    Download Citation