• Photonics Research
  • Vol. 12, Issue 2, 331 (2024)
Cuiping Ma1, Peng Yu1、*, Zhimin Jing1, Yisong Zhu1, Peihang Li1, Wenhao Wang2, Hongxing Xu3, Yanning Zhang1, Liang Pan1, Tae-Youl Choi4, Arup Neogi1, Alexander O. Govorov5, and Zhiming Wang1
Author Affiliations
  • 1Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 2Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
  • 3School of Physics and Technology, Center for Nanoscience and Nanotechnology, Wuhan University, Wuhan 430072, China
  • 4Department of Mechanical Engineering, University of North Texas, Denton, Texas 76207, USA
  • 5Department of Physics and Astronomy and Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, USA
  • show less
    DOI: 10.1364/PRJ.509552 Cite this Article Set citation alerts
    Cuiping Ma, Peng Yu, Zhimin Jing, Yisong Zhu, Peihang Li, Wenhao Wang, Hongxing Xu, Yanning Zhang, Liang Pan, Tae-Youl Choi, Arup Neogi, Alexander O. Govorov, Zhiming Wang. Circular polarization-selective optical, photothermal, and optofluidic effects in chiral metasurfaces[J]. Photonics Research, 2024, 12(2): 331 Copy Citation Text show less
    References

    [1] X. Jin, Y. Sang, Y. Shi. Optically active upconverting nanoparticles with induced circularly polarized luminescence and enantioselectively triggered photopolymerization. ACS Nano, 13, 2804-2811(2019).

    [2] A. O. Govorov, Y. K. Gun’ko, J. M. Slocik. Chiral nanoparticle assemblies: circular dichroism, plasmonic interactions, and exciton effects. J. Mater. Chem., 21, 16806-16818(2011).

    [3] Y. Luo, C. Chi, M. Jiang. Plasmonic chiral nanostructures: chiroptical effects and applications. Adv. Opt. Mater., 5, 1700040(2017).

    [4] L. K. Kirill, T. Pavel, S. K. Yuri. Nonlinear chiral metaphotonics: a perspective. Adv. Photon., 5, 064001(2023).

    [5] J. Lv, D. Ding, X. Yang. Biomimetic chiral photonic crystals. Angew. Chem. Int. Ed., 58, 7783-7787(2019).

    [6] M. Cen, J. Wang, J. Liu. Ultrathin suspended chiral metasurfaces for enantiodiscrimination. Adv. Mater., 34, 2203956(2022).

    [7] Y. Chen, X. Yang, J. Gao. Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces. Light Sci. Appl., 7, 84(2018).

    [8] M. Sun, L. Xu, A. Qu. Site-selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanoparticles. Nat. Chem., 10, 821-830(2018).

    [9] Y. Zhao, A. N. Askarpour, L. Sun. Chirality detection of enantiomers using twisted optical metamaterials. Nat. Commun., 8, 14180(2017).

    [10] Y. Liu, Z. Wu, P. S. Kollipara. Label-free ultrasensitive detection of abnormal chiral metabolites in diabetes. ACS Nano, 15, 6448-6456(2021).

    [11] D. M. Rogers, S. B. Jasim, N. T. Dyer. Electronic circular dichroism spectroscopy of proteins. Chem, 5, 2751-2774(2019).

    [12] P. Kumar, T. Vo, M. Cha. Photonically active bowtie nanoassemblies with chirality continuum. Nature, 615, 418-424(2023).

    [13] Y. Tang, A. E. Cohen. Optical chirality and its interaction with matter. Phys. Rev. Lett., 104, 163901(2010).

    [14] V. K. Valev, J. J. Baumberg, C. Sibilia. Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook. Adv. Mater., 25, 2517-2534(2013).

    [15] H. Jiang, K. Peng, Y. Cui. Design and simulation of a GST-based metasurface with strong and switchable circular dichroism. Opt. Lett., 47, 1907-1910(2022).

    [16] F. Lu, H. Ou, Y.-S. Lin. Reconfigurable terahertz switch using flexible L-shaped metamaterial. Opt. Lett., 45, 6482-6485(2020).

    [17] J. Fan, D. Xiao, T. Lei. Incidence angle-dependent broadband chiral metamaterial for near-infrared light absorption. J. Opt. Soc. Am. B, 37, 3422-3428(2020).

    [18] D. Han, W. Li, T. Sun. 2D-to-3D buckling transformability enabled reconfigurable metamaterials for tunable chirality and focusing effect. Photon. Res., 11, 1770-1780(2023).

    [19] B. Wang, C. Ma, P. Yu. Ultra-broadband nanowire metamaterial absorber. Photon. Res., 10, 2718-2727(2022).

    [20] K. Koshelev, Y. Tang, Z. Hu. Resonant chiral effects in nonlinear dielectric metasurfaces. ACS Photon., 10, 298-306(2023).

    [21] M. Hentschel, M. Schäferling, X. Duan. Chiral plasmonics. Sci. Adv., 3, e1602735(2017).

    [22] Z. Liu, Y. Xu, C.-Y. Ji. Fano-enhanced circular dichroism in deformable stereo metasurfaces. Adv. Mater., 32, 1907077(2020).

    [23] Y. Cheng, F. Chen, H. Luo. Multi-band giant circular dichroism based on conjugated bilayer twisted-semicircle nanostructure at optical frequency. Phys. Lett. A, 384, 126398(2020).

    [24] W. Wei, S. Chen, C.-Y. Ji. Ultra-sensitive amplitude engineering and sign reversal of circular dichroism in quasi-3D chiral nanostructures. Opt. Express, 29, 33572-33581(2021).

    [25] X. Sun, J. Yang, L. Sun. Tunable reversal of circular dichroism in the seed-mediated growth of bichiral plasmonic nanoparticles. ACS Nano, 16, 19174-19186(2022).

    [26] B. Tang, Z. Li, E. Palacios. Chiral-selective plasmonic metasurface absorbers operating at visible frequencies. IEEE Photon. Technol. Lett., 29, 295-298(2017).

    [27] M. Pan, Q. Li, Y. Hong. Circular-polarization-sensitive absorption in refractory metamaterials composed of molybdenum zigzag arrays. Opt. Express, 26, 17772-17780(2018).

    [28] J. Cai, W. Zhang, L. Xu. Polarization-sensitive optoionic membranes from chiral plasmonic nanoparticles. Nat. Nanotechnol., 17, 408-416(2022).

    [29] W. Li, Z. J. Coppens, L. V. Besteiro. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat. Commun., 6, 8379(2015).

    [30] Y. Zhu, H. Xu, P. Yu. Engineering plasmonic hot carrier dynamics toward efficient photodetection. Appl. Phys. Rev., 8, 021305(2021).

    [31] X.-T. Kong, L. K. Khorashad, Z. Wang. Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers. Nano Lett., 18, 2001-2008(2018).

    [32] C. Ma, P. Yu, W. Wang. Chiral optofluidics with a plasmonic metasurface using the photothermal effect. ACS Nano, 15, 16357-16367(2021).

    [33] C. Ma, A. Movsesyan, Z. Jing. Chiral opto-fluidics and plasmonic nanostructures as a functional nanosystem for manipulating surface deformations. Adv. Opt. Mater., 11, 2300645(2023).

    [34] P. Yu, L. V. Besteiro, Y. Huang. Broadband metamaterial absorbers. Adv. Opt. Mater., 7, 1800995(2019).

    [35] A. Movsesyan, L. V. Besteiro, X.-T. Kong. Engineering strongly chiral plasmonic lattices with achiral unit cells for sensing and photodetection. Adv. Opt. Mater., 10, 2101943(2022).

    [36] R. Gibson, I. Avrutsky, S. Vangala. Pole-based analysis of coupled modes in metal–insulator–metal plasmonic structures. J. Opt. Soc. Am. B, 38, 776-782(2021).

    [37] G. Baffou, F. Cichos, R. Quidant. Applications and challenges of thermoplasmonics. Nat. Mater., 19, 946-958(2020).

    [38] R. Gao, R. Fu, W. Jiao. Photothermal effect of Au nanoparticles and photothermal inactivation to saccharomycetes cell. Optik, 206, 163757(2020).

    [39] B. J. Roxworthy, A. M. Bhuiya, S. P. Vanka. Understanding and controlling plasmon-induced convection. Nat. Commun., 5, 3173(2014).

    [40] J. D. Jackson, R. F. Fox. Book Review: Classical electrodynamics, 3rd ed. Am. J. Phys., 67, 841-842(1999).

    [41] J. S. Donner, G. Baffou, D. McCloskey. Plasmon-assisted optofluidics. ACS Nano, 5, 5457-5462(2011).

    [42] P. B. Johnson, R. W. Christy. Optical constants of the noble metals. Phys. Rev. B, 6, 4370-4379(1972).

    Cuiping Ma, Peng Yu, Zhimin Jing, Yisong Zhu, Peihang Li, Wenhao Wang, Hongxing Xu, Yanning Zhang, Liang Pan, Tae-Youl Choi, Arup Neogi, Alexander O. Govorov, Zhiming Wang. Circular polarization-selective optical, photothermal, and optofluidic effects in chiral metasurfaces[J]. Photonics Research, 2024, 12(2): 331
    Download Citation