• Chinese Journal of Quantum Electronics
  • Vol. 39, Issue 3, 373 (2022)
Yangdong ZHENG1、2、* and Hua GAO3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007461.2022.03.009 Cite this Article
    ZHENG Yangdong, GAO Hua. Nonequilibrium spin transport properties of three site one-dimensional chain system with electronic interactions and their analytic formulas[J]. Chinese Journal of Quantum Electronics, 2022, 39(3): 373 Copy Citation Text show less
    References

    [1] Zutic I, Fabian J, Das Sarma S. Spintronics: Fundamentals and applications[J]. Reviews of Modern Physics, 2004, 76(2): 323-410.

    [2] Baltz V, Manchon A, Tsoi M, et al. Antiferromagnetic spintronics[J]. Reviews of Modern Physics, 2018, 90: 015005.

    [3] Datta S, Das B. Electronic analog of the electro-optic modulator[J]. Applied Physics Letters, 1990, 56(7): 665-667.

    [4] Ono K, Giavaras G, Tanamoto T, et al. Hole spin resonance and spin-orbit coupling in a silicon metal-oxide-semiconductor field-effect transistor[J]. Physical Review Letters, 2017, 119(15): 156802.

    [5] Sato S, Ichihara M, Tanaka M, et al. Electron spin and momentum lifetimes in two-dimensional Si accumulation channels: Demonstration of Schottky-barrier spin metal-oxide-semiconductor field-effect transistors at room temperature[J]. Physical Review B, 2019, 99(16): 165301.

    [6] Deutsch D, Jozsa R. Rapid solution of problems by quantum computation[J]. Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 1992, 439: 553.

    [7] Das Sarma S, Fabian J, Hu X D, et al. Spin electronics and spin computation[J]. Solid State Communications, 2001, 119(4/5): 207-215.

    [8] Nielsen M A, Chuang I L. Quantum Computation and Quantum Information[M]. New York: Cambridge University Press, 2000.

    [9] Burkard G, Engel H A, Loss D. Spintronics and quantum dots for quantum computing and quantum communication[J]. Fortschritte Der Physik, 2000, 48(9/10/11): 965-986.

    [10] Popescu A E, Ionicioiu R. All-electrical quantum computation with mobile spin qubits[J]. Physical Review B, 2004, 69(24): 245422.

    [11] Foldi P, Molnár B, Benedict M G, et al. Spintronic single-qubit gate based on a quantum ring with spin-orbit interaction[J]. Physical Review B, 2005, 71(3): 033309.

    [12] Ono K, Shevchenko S N, Mori T, et al. Quantum interferometry with a g-factor-tunable spin qubit[J]. Physical Review Letters, 2019, 122(20): 207703.

    [13] Calderon-Vargas F A, Barron G S, Deng X H, et al. Fast high-fidelity entangling gates for spin qubits in Si double quantum dots[J]. Physical Review B, 2019, 100: 035304.

    [14] Loss D, DiVincenzo D P. Quantum computation with quantum dots[J]. Physical Review A, 1998, 57(1): 120-126.

    [15] Kane B E. A silicon-based nuclear spin quantum computer[J]. Nature, 1998, 393(6681): 133-137.

    [16] Nonoyama S, Oguri A, Asano Y, et al. Numerical study of the effect of Coulomb repulsion on resonant tunneling[J]. Physical Review B, 1994, 50(4): 2667-2670.

    [17] Kawamura K, Aono T. Theory of single electron tunneling through a quantum dot dimer[J]. Japanese Journal of Applied Physics, 1997, 36(Part 1, 6B): 3951-3955.

    [18] Aono T, Kawamura K. Double quantum dots as dissipative two level systems[J]. Japanese Journal of Applied Physics, 1997, 36(Part 1, 6B): 3936-3940.

    [19] Aono T, Eto M, Kawamura K. Conductance through quantum dot dimer below the Kondo temperature[J]. Journal of the Physical Society of Japan, 1998, 67(6): 1860-1863.

    [20] Sergueev N, Sun Q F, Guo H, et al. Spin-polarized transport through a quantum dot: Anderson model with on-site Coulomb repulsion[J]. Physical Review B, 2002, 65(16): 165303.

    [21] Khomyakov P A, Brocks G, Karpan V, et al. Conductance calculations for quantum wires and interfaces: Mode matching and Green’s functions[J]. Physical Review B, 2005, 72(3): 035450.

    [22] Beenakker C. Excess conductance of a spin-filtering quantum dot[J]. Physical Review B, 2006, 73(20): 201304.

    [23] Gong W J, Zheng Y S, Liu Y, et al. Well-defined insulating band for electronic transport through a laterally coupled double-quantum-dot chain: Nonequilibrium Green’s function calculations[J]. Physical Review B, 2006, 73(24): 245329.

    [24] Mühlbacher L, Ankerhold J. Nonequilibrium many-body dynamics along a dissipative Hubbard chain: Symmetries and quantum Monte Carlo simulations[J]. Physical Review B, 2006, 74(16): 165105.

    [25] Giavaras G, Jefferson J H, Fearn M, et al. Singlet-triplet filtering and entanglement in a quantum dot structure[J]. Physical Review B, 2007, 75(8): 085302.

    [27] Zimbovskaya N A. Electronic transport through a quantum dot in the Coulomb blockade regime: Nonequilibrium Green’s function based model[J]. Physical Review B, 2008, 78(3): 035331.

    [28] Chao S P, Palacios G. Nonequilibrium transport in the Anderson model of a biased quantum dot: Scattering Bethe ansatz phenomenology[J]. Physical Review B, 2011, 83(19): 195314.

    [29] Kennes D M, Jakobs S G, Karrasch C, et al. Renormalization group approach to time-dependent transport through correlated quantum dots[J]. Physical Review B, 2012, 85(8): 085113.

    [30] Lim J S, López R, Limot L, et al. Nonequilibrium spin-current detection with a single Kondo impurity[J]. Physical Review B, 2013, 88(16): 165403.

    [31] Büsser C A, Heidrich-Meisner F. Inducing spin correlations and entanglement in a double quantum dot through nonequilibrium transport[J]. Physical Review Letters, 2013, 111(24): 246807.

    [32] Tu M W Y, Aharony A, Zhang W M, et al. Real-time dynamics of spin-dependent transport through a double-quantum-dot Aharonov-Bohm interferometer with spin-orbit interaction[J]. Physical Review B, 2014, 90(16): 165422.

    [33] Rizzo B, Camjayi A, Arrachea L. Transport in quantum spin Hall edges in contact to a quantum dot[J]. Physical Review B, 2016, 94(12): 125425.

    [34] Zhou L L, Zeng Z Y, Zhou X Y, et al. Antiresonance in the spin current through a quantum dot induced by electron-phonon interaction[J]. Physical Review B, 2020, 102(4): 045422.

    [35] Schwinger J. Brownian motion of a quantum oscillator[J]. Journal of Mathematical Physics, 1961, 2: 407.

    [36] Keldysh L V. Diagram technique for nonequilibrium processes[J]. Soviet Physics-JETP, 1965, 20(4): 1018-1026.

    [37] Caroli C, Combescot R, Nozieres P, et al. Direct calculation of the tunneling current[J]. Journal of Physics C: Solid State Physics, 1971, 4(8): 916-929.

    [38] Hershfield S, Davies J H, Wilkins J W. Resonant tunneling through an Anderson impurity. I. Current in the symmetric model[J]. Physical Review B, 1992, 46(11): 7046-7060.

    [39] Meir Y, Wingreen N S, Lee P A. Transport through a strongly interacting electron system: Theory of periodic conductance oscillations[J]. Physical Review Letters, 1991, 66(23): 3048-3051.

    [40] Datta S. Electronic Transport in Mesoscopic Systems[M]. Cambridge: Cambridge University Press, 1995.

    [41] Ajisaka S, Barra F. Nonequilibrium mesoscopic Fermi-reservoir distribution and particle current through a coherent quantum system[J]. Physical Review B, 2013, 87(19): 195114.

    [42] Landau L D, Lifshitz E M. Course of Theoretical Physics Vol. 9. Statistical Physics Part2, Vol. 10. Physical Kinetics[M]. New York: Pergamon Press, 1981.

    [43] Meir Y, Wingreen N S. Landauer formula for the current through an interaction electron region[J]. Physical Review Letters, 1992, 68: 2512.

    [44] Goldhaber-Gordon D, Shtrikman H, Mahalu D, et al. Kondo effect in a single-electron transistor[J]. Nature, 1998, 391(6663): 156-159.

    [45] Zheng Y D, Mizuta H, Oda S. Theoretical study of nonequilibrium electron transport and charge distribution in a three-site quantum wire[J]. Japanese Journal of Applied Physics, 2008, 47(1): 371-382.

    ZHENG Yangdong, GAO Hua. Nonequilibrium spin transport properties of three site one-dimensional chain system with electronic interactions and their analytic formulas[J]. Chinese Journal of Quantum Electronics, 2022, 39(3): 373
    Download Citation