• Chinese Journal of Quantum Electronics
  • Vol. 39, Issue 2, 272 (2022)
Haifeng HU* and Qiwen ZHAN
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2022.02.007 Cite this Article
    HU Haifeng, ZHAN Qiwen. Chirality measurements using orbital angular momentum of light[J]. Chinese Journal of Quantum Electronics, 2022, 39(2): 272 Copy Citation Text show less
    References

    [1] Barron L D. Molecular Light Scattering and Optical Activity[M]. Cambridge: Cambridge University Press, 2004: 1-20.

    [2] Mun J, Kim M, Yang Y, et al. Electromagnetic chirality: From fundamentals to nontraditional chiroptical phenomena[J]. Light: Science & Applications, 2020, 9(1): 139.

    [3] Tang Y Q, Cohen A E. Optical chirality and its interaction with matter[J]. Physical Review Letters, 2010, 104(16): 163901.

    [4] Tang Y Q, Cohen A E. Enhanced enantioselectivity in excitation of chiral molecules by superchiral light[J]. Science, 2011, 332(6027): 333-336.

    [5] Yao A M, Padgett M J. Orbital angular momentum: Origins, behavior and applications[J]. Advances in Optics and Photonics, 2011, 3(2): 161-204.

    [6] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488-496.

    [7] Chen Y, Shen W G, Li Z M, et al. Underwater transmission of high-dimensional twisted photons over 55 meters[J]. PhotoniX, 2020, 1(1): 5.

    [8] Fu S Y, Zhai Y W, Zhang J Q, et al. Universal orbital angular momentum spectrum analyzer for beams[J]. PhotoniX, 2020, 1(1): 19.

    [9] Allen L, Beijersbergen M W, Spreeuw R J, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189.

    [10] Zhan Q W. Cylindrical vector beams: From mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1-57.

    [11] Alexandrescu A, Cojoc D, Fabrizio E D. Mechanism of angular momentum exchange between molecules and Laguerre-Gaussian beams[J]. Physical Review Letters, 2006, 96(24): 243001.

    [12] Forbes K A, Andrews D L. Optical orbital angular momentum: Twisted light and chirality[J]. Optics Letters, 2018, 43(3): 435-438.

    [13] Lffler W, Broer D J, Woerdman J P. Circular dichroism of cholesteric polymers and the orbital angular momentum of light[J]. Physical Review A, 2011, 83(6): 065801.

    [14] Mondal P K, Deb B, Majumder S. Angular momentum transfer in interaction of Laguerre-Gaussian beams with atoms and molecules[J]. Physical Review A, 2014, 89(6): 063418.

    [15] Barnett S M, Allen L, Cameron R P, et al. On the natures of the spin and orbital parts of optical angular momentum[J]. Journal of Optics, 2016, 18(6): 064004.

    [16] Bliokh K Y, Rodríguez-Fortuno F J, Nori F, et al. Spin-orbit interactions of light[J]. Nature Photonics, 2015, 9(12): 796-808.

    [17] Otte E, Rosales-Guzman C, Ndagano B, et al. Entanglement beating in free space through spin-orbit coupling[J]. Light: Science & Applications, 2018, 7(5): 18009.

    [18] Harris A B, Kamien R D, Lubensky T C. Molecular chirality and chiral parameters[J]. Reviews of Modern Physics, 1999, 71(5): 1745-1757.

    [19] Babiker M, Bennett C R, Andrews D L, et al. Orbital angular momentum exchange in the interaction of twisted light with molecules[J]. Physical Review Letters, 2002, 89(14): 143601.

    [20] Araoka F, Verbiest T, Clays K, et al. Interactions of twisted light with chiral molecules: An experimental investigation[J]. Physical Review A, 2005, 71(5): 055401.

    [21] Reddy I V A K, Baev A, Furlani E P, et al. Interaction of structured light with a chiral plasmonic metasurface: Giant enhancement of chiro-optic response[J]. ACS Photonics, 2018, 5(3): 734-740.

    [22] Zambrana-Puyalto X, Vidal X, Molina-Terriza G. Angular momentum-induced circular dichroism in non-chiral nanostructures[J]. Nature Communications, 2014, 5: 4922.

    [23] Wang S, Deng Z L, Cao Y, et al. Angular momentum-dependent transmission of circularly polarized vortex beams through a plasmonic coaxial nanoring[J]. IEEE Photonics Journal, 2018, 10(1): 1-10.

    [24] Afanasev A, Carlson C E, Solyanik M. Circular dichroism of twisted photons in non-chiral atomic matter[J]. Journal of Optics, 2017, 19(10): 105401.

    [25] van Veenendaal M, McNulty I. Prediction of strong dichroism induced by X rays carrying orbital momentum[J]. Physical Review Letters, 2007, 98(15): 157401.

    [26] Romero L C D, Andrews D L, Babiker M. A quantum electrodynamics framework for the nonlinear optics of twisted beams[J]. Journal of Optics B: Quantum and Semiclassical Optics, 2002, 4(2): S66-S72.

    [27] Forbes K A. Raman optical activity using twisted photons[J]. Physical Review Letters, 2019, 122(10): 103201.

    [28] Brullot W, Vanbel M K, Swusten T, et al. Resolving enantiomers using the optical angular momentum of twisted light[J]. Science Advances, 2016, 2(3): e1501349.

    [30] Vázquez-Guardado A, Chanda D. Superchiral light generation on degenerate achiral surfaces[J]. Physical Review Letters, 2018, 120(13): 137601.

    [31] Zhao Y, Askarpour A N, Sun L Y, et al. Chirality detection of enantiomers using twisted optical metamaterials[J]. Nature Communications, 2017, 8: 14180.

    [32] Yao K, Liu Y M. Enhancing circular dichroism by chiral hotspots in silicon nanocube dimers[J]. Nanoscale, 2018, 10(18): 8779-8786.

    [33] Rui G H, Hu H F, Singer M, et al. Symmetric meta-absorber-induced superchirality[J]. Advanced Optical Materials, 2019, 7(21): 1901038.

    [34] Wu T, Wang R Y, Zhang X D. Plasmon-induced strong interaction between chiral molecules and orbital angular momentum of light[J]. Scientific Reports, 2015, 5: 18003.

    [35] Hu H F, Gan Q Q, Zhan Q W. Generation of a nondiffracting superchiral optical needle for circular dichroism imaging of sparse subdiffraction objects[J]. Physical Review Letters, 2019, 122(22): 223901.

    [36] Rui G H, Ying X Y, Zou S T, et al. Enhanced circular dichroism of sparse nanoobjects by localized superchiral optical field[J]. Journal of Optics, 2021, 23(6): 065002.

    [37] Mishchenko M I, Travis L D, Lacis A A. Scattering, Absorption and Emission of Light by Small Particles[M]. Cambridge: Cambridge University Press, 2002: 116-119.

    [38] Lindell I V, Vitanen A J, Tretyakov S A, et al. Electromagnetic Waves in Chiral and Bi-Isotropic Media[M]. Boston: Artech House, 1994: 23-24.

    [39] Bohren C F. Light scattering by an optically active sphere[J]. Chemical Physics Letters, 1974, 29(3): 458-462.

    [40] Hu H F, Zhan Q W. Enhanced chiral Mie scattering by a dielectric sphere within a superchiral light field[J]. Physics, 2021, 3(3): 747-756.

    [41] Ni J C, Liu S L, Wu D, et al. Gigantic vortical differential scattering as a monochromatic probe for multiscale chiral structures[J]. PNAS, 2021, 118(2): e2020055118.

    [42] Ye L Z, Yang L Q, Zheng X, et al. Enhancing circular dichroism signals with vector beams[J]. Physical Review Letters, 2021, 126(12): 123001.

    [43] Li M M, Yan S, Zhang Y, et al. Generation of controllable chiral optical fields by vector beams[J]. Nanoscale, 2020, 12(28): 15453-15459.

    [44] Ayuso D, Neufeld O, Ordonez A F, et al. Synthetic chiral light for efficient control of chiral light-matter interaction[J]. Nature Photonics, 2019, 13(12): 866-871.

    [45] Neufeld O, Tzur M E, Cohen O. Degree of chirality of electromagnetic fields and maximally chiral light[J]. Physical Review A, 2020, 101(5): 053831.

    [46] Chong A, Wan C H, Chen J, et al. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum[J]. Nature Photonics, 2020, 14(6): 350-354.

    [47] Chen J, Wan C, Chong A, et al. Subwavelength focusing of a spatio-temporal wave packet with transverse orbital angular momentum[J]. Optics Express, 2020, 28(12): 18472-18478.

    [48] Wan C H, Chen J, Chong A, et al. Photonic orbital angular momentum with controllable orientation[OL]. National Science Review, 2021, https://doi.org/10.1093/nsr/nwab149nwab149.

    [49] Wan C H, Chen J, Chong A, et al. Generation of ultrafast spatiotemporal wave packet embedded with time-varying orbital angular momentum[J]. Science Bulletin, 2020, 65(16): 1334-1336.

    CLP Journals

    [1] WANG Xiaoyan, WANG Zhiyuan, CHEN Ziyang, PU Jixioing. Detection of orbital angular momentum of multiple vortices from speckle via deep learning[J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 955

    HU Haifeng, ZHAN Qiwen. Chirality measurements using orbital angular momentum of light[J]. Chinese Journal of Quantum Electronics, 2022, 39(2): 272
    Download Citation