• Chinese Optics Letters
  • Vol. 20, Issue 4, 043201 (2022)
Yunqing Jiang1、2, Xiaoqiang Zhang1、2、*, Yongshan Liu1、2, Pierre Vallobra1, Sylvain Eimer1, Fan Zhang1、2, Yinchang Du2、3, Fengguang Liu1、2, Yong Xu1、2、**, and Weisheng Zhao1、2、***
Author Affiliations
  • 1School of Integrated Circuit Science and Engineering, Hefei Innovation Research Insititute, Beihang University, Beijing 100191, China
  • 2Anhui High Reliability Chips Engineering Laboratory, Hefei 230013, China
  • 3Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei 230026, China
  • show less
    DOI: 10.3788/COL202220.043201 Cite this Article Set citation alerts
    Yunqing Jiang, Xiaoqiang Zhang, Yongshan Liu, Pierre Vallobra, Sylvain Eimer, Fan Zhang, Yinchang Du, Fengguang Liu, Yong Xu, Weisheng Zhao. Spintronic terahertz emitter with integrated electromagnetic control[J]. Chinese Optics Letters, 2022, 20(4): 043201 Copy Citation Text show less

    Abstract

    Spintronic thin films are considered as one of the promising terahertz (THz) source candidates, owing to their high performance and low cost. Much effort has been made to achieve spintronic THz sources with broadband and high conversion efficiency. However, the development of spintronic THz emitters with good compatibility, low cost, and miniaturized technology still faces many challenges. Therefore, it is urgent to extend commercial and portable spintronic THz emitters to satisfy many practical applications. Herein, we design a new generation of spintronic THz emitters composed of an alternating electromagnet and a miniaturized electronic controller. Not only can this new type of spintronic THz emitter largely simplify the ancillary equipment for spintronic sources, it also has a twice larger THz signal compared to the traditional THz time-domain spectroscopy systems with a mechanical chopper. Experimental results and theoretical calculations for electromagnetic coils show that our design can stably generate THz signals that are independent of the frequency and magnetic field of alternating signals. As the spin thin film is optimized, a magnetic field as low as 75 G satisfies the requirement for high performance THz emission. Hence, not only is the efficiency of the pump power enhanced, but also the driving current in the electromagnet is decreased. We believe that it has a wide range of applications and profound implications in THz technology based on spintronic emitters in the future.
    ETHzM×ux,

    View in Article

    Yunqing Jiang, Xiaoqiang Zhang, Yongshan Liu, Pierre Vallobra, Sylvain Eimer, Fan Zhang, Yinchang Du, Fengguang Liu, Yong Xu, Weisheng Zhao. Spintronic terahertz emitter with integrated electromagnetic control[J]. Chinese Optics Letters, 2022, 20(4): 043201
    Download Citation