• Acta Optica Sinica
  • Vol. 42, Issue 9, 0923001 (2022)
Limin Ma1、2、3, Han Xu1、2, Yuhuang Liu1、2, Guili Xu1、2, and Wanlin Guo3、4、*
Author Affiliations
  • 1College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, Jiangsu, China
  • 2Non-Destructive Testing and Monitoring Technology for High-Speed Transport Facilities Key Laboratory of Ministry of Industry and Information Technology, Nanjing 211100, Jiangsu, China
  • 3Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing 210016, Jiangsu, China
  • 4State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China
  • show less
    DOI: 10.3788/AOS202242.0923001 Cite this Article Set citation alerts
    Limin Ma, Han Xu, Yuhuang Liu, Guili Xu, Wanlin Guo. Broadband Terahertz Absorber Based on Graphene Metamaterial[J]. Acta Optica Sinica, 2022, 42(9): 0923001 Copy Citation Text show less
    References

    [1] Wang M Y, Li H L, Dong Y L et al. Propagation matrix method study on THz waves propagation in a dusty plasma sheath[J]. IEEE Transactions on Antennas and Propagation, 64, 286-290(2016).

    [2] Talataisong W. Gorecki J, van Putten L D, et al. Hollow-core antiresonant terahertz fiber-based TOPAS extruded from a 3D printer using a metal 3D printed nozzle[J]. Photonics Research, 9, 1513-1521(2021).

    [3] Zhu Y M, Shi C J, Wu X et al. Terahertz spectroscopy algorithms for biomedical detection[J]. Acta Optica Sinica, 41, 0130001(2021).

    [4] Zhang Y X, Qiao S, Liang S X et al. Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure[J]. Nano Letters, 15, 3501-3506(2015).

    [5] Liu Y, Peng X Y, Wang Z B et al. Terahertz-wave absorber based on metamaterial[J]. Infrared Technology, 37, 756-763(2015).

    [6] Yen T J, Padilla W J, Fang N et al. Terahertz magnetic response from artificial materials[J]. Science, 303, 1494-1496(2004).

    [7] Wang Y, Cui Z J, Zhu D Y et al. Composite metamaterials for THz perfect absorption[J]. Physica Status Solidi (a), 216, 1800940(2019).

    [8] Ghosh S, Lim S. Fluidically switchable metasurface for wide spectrum absorption[J]. Scientific Reports, 8, 10169(2018).

    [9] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).

    [10] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 292, 77-79(2001).

    [11] Chen H T, Padilla W J. Zide J M O, et al. Active terahertz metamaterial devices[J]. Nature, 444, 597-600(2006).

    [12] Grant J, Escorcia-Carranza I, Li C et al. A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer[J]. Laser & Photonics Reviews, 7, 1043-1048(2013).

    [13] Li S Q, Ma J L, Wu X J et al. Double-slit diffraction of terahertz wave generated by tilted-pulse-front pumping[J]. Chinese Optics of Letters, 19, 051901(2021).

    [14] He Z H, Li L Q, Ma H Q et al. Graphene-based metasurface sensing applications in terahertz band[J]. Results in Physics, 21, 103795(2021).

    [15] Wang J, Hu C P, Tian Q et al. Ultrahigh-Q and polarization-independent terahertz metamaterial perfect absorber[J]. Plasmonics, 15, 1943-1947(2020).

    [16] Fan R H, Xiong B, Peng R W et al. Constructing metastructures with broadband electromagnetic functionality[J]. Advanced Materials, 32, e1904646(2020).

    [17] Jin Q. E Y W, Gao S H, et al. Preference of subpicosecond laser pulses for terahertz wave generation from liquids[J]. Advanced Photonics, 2, 015001(2020).

    [18] Zhang H F, Wang Z L, Hu C X et al. A tailored broadband terahertz metamaterial absorber based on the thermal expansion feature of liquid metal[J]. Results in Physics, 16, 102937(2020).

    [19] Zhou Y S, Xia H, Zhang L M et al. Temperature insensitive ultra-broadband THz metamaterial absorber based on metal square ring resonators[J]. Results in Physics, 22, 103915(2021).

    [20] Yang S, Zhou R L, Liu D et al. Modulation and sensing properties of graphene plasma based on surface electric current boundary condition[J]. Acta Optica Sinica, 39, 1124001(2019).

    [21] Liu C, Qi L M, Zhang X. Broadband graphene-based metamaterial absorbers[J]. AIP Advances, 8, 015301(2018).

    [22] Zhang H, Ling F, Wang H et al. A water hybrid graphene metamaterial absorber with broadband absorption[J]. Optics Communications, 463, 125394(2020).

    [23] Sun J Z, Li J S. Broadband adjustable terahertz absorption in series asymmetric oval-shaped graphene pattern[J]. Frontiers in Physics, 8, 245(2020).

    [25] You B, Zhang R, Wang S C et al. A high-performance broadband terahertz absorber based on single layer cross-shaped graphene[J]. Optik, 241, 167249(2021).

    [26] Yi N N, Zong R, Gong J et al. Dynamically tunable broadband absorber with a single ultra-thin layer of graphene in the terahertz regime[J]. Materials Science in Semiconductor Processing, 136, 106161(2021).

    [27] Lü H L, Guo Y H, Zhao Y et al. Achieving tunable electromagnetic absorber via graphene/carbon sphere composites[J]. Carbon, 110, 130-137(2016).

    [28] Ansell D, Radko I P, Han Z et al. Hybrid graphene plasmonic waveguide modulators[J]. Nature Communications, 6, 8846(2015).

    [29] Zhang Y P, Li Y, Cao Y Y et al. Graphene induced tunable and polarization-insensitive broadband metamaterial absorber[J]. Optics Communications, 382, 281-287(2017).

    [30] Yi D, Wei X C, Xu Y L. Tunable microwave absorber based on patterned graphene[J]. IEEE Transactions on Microwave Theory and Techniques, 65, 2819-2826(2017).

    [31] Emani N K, Chung T F, Ni X J et al. Electrically tunable damping of plasmonic resonances with graphene[J]. Nano Letters, 12, 5202-5206(2012).

    [32] Lu Z G, Ma L M, Tan J B et al. Transparent multi-layer graphene/polyethylene terephthalate structures with excellent microwave absorption and electromagnetic interference shielding performance[J]. Nanoscale, 8, 16684-16693(2016).

    [33] Jiang Y N, Wang Y, Ge D B et al. An ultra-wideband absorber based on graphene[J]. Acta Physica Sinica, 65, 054101(2016).

    [34] Lu W B, Wang J W, Zhang J et al. Flexible and optically transparent microwave absorber with wide bandwidth based on graphene[J]. Carbon, 152, 70-76(2019).

    Limin Ma, Han Xu, Yuhuang Liu, Guili Xu, Wanlin Guo. Broadband Terahertz Absorber Based on Graphene Metamaterial[J]. Acta Optica Sinica, 2022, 42(9): 0923001
    Download Citation