• High Power Laser and Particle Beams
  • Vol. 33, Issue 12, 123015 (2021)
Weijie Wang1,2,3, Zhenguo Zhao1,2,3,4, Shaoliang Hu1,2, Hanyu Li1,2,3, and Haijing Zhou1,2,3,*
Author Affiliations
  • 1CAEP Software Center for High Performance Numerical Simulation, Beijing 100088, China
  • 2Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
  • 3Key Laboratory of Science and Technology on Complex Electromagnetic Environment, CAEP, Mianyang 621900, China
  • 4State Key Laboratory of ASIC & System, Fudan University, Shanghai 201203, China
  • show less
    DOI: 10.11884/HPLPB202133.210359 Cite this Article
    Weijie Wang, Zhenguo Zhao, Shaoliang Hu, Hanyu Li, Haijing Zhou. High-performance full-wave computational electromagnetic analysis for chip-system under electromagnetic pulse[J]. High Power Laser and Particle Beams, 2021, 33(12): 123015 Copy Citation Text show less

    Abstract

    The objective of this work is to investigate high-performance electromagnetic field finite element solver towards high resolution and high fidelity electromagnetic simulations of product-level ICs and electronics. The emphasis of this work is to overcome the parallel bottleneck of multiscale problems and fulfill full-wave electromagnetic simulation of complex problems. Numerical simulation software can be developed quickly based on our software-platform. Finally, the capability and benefits of the algorithms are validated and illustrated through practical simulation of chip in computer case.
    $ \left\{ {\boldsymbolε2\boldsymbolE(t)t2+\boldsymbolσe\boldsymbolE(t)t+×[\boldsymbolμ1×\boldsymbolE(t)]=Jimpt×[\boldsymbolμ1\boldsymbolMimp],in Ω\boldsymbolE(t)|t=0=0, \boldsymbolE(t)|tt=0=0 ,on S0\boldsymboln^×(1μ0×\boldsymbolE(t))+Y0\boldsymboln^×(\boldsymboln^×t\boldsymbolE(t))=0 ,at t=0} \right. $(1)

    View in Article

    $V[\boldsymbolT\boldsymbolε2\boldsymbolEt2+\boldsymbolT\boldsymbolσe\boldsymbolEt+(×\boldsymbolT)\boldsymbolμ1(×\boldsymbolE)]dV+Y0S0(\boldsymboln^×\boldsymbolT)(\boldsymboln^×t\boldsymbolE(t))dS=V\boldsymbolT[\boldsymbolJimpt+×[\boldsymbolμ1\boldsymbolMimp]] $(2)

    View in Article

    $ {\boldsymbol{E}}\left( {r,t} \right) = \sum\limits_{i = 1}^{{N_{{\rm{edge}}}}} {{N_i}\left( r \right){{\boldsymbol{E}}_i}\left( t \right)} $(3)

    View in Article

    $ \left[ T \right]\frac{{{{\rm{d}}^2}\left\{ E \right\}}}{{{\rm{d}}{t^2}}} + \left[ R \right]\frac{{{\rm{d}}\left\{ E \right\}}}{{{\rm{d}}t}} + \left[ S \right]\left\{ E \right\} = \left\{ f \right\} $(4)

    View in Article

    ${1(Δt)2[T]+12Δt[R]+β[S]}{E}n+1={2(Δt)2[T](12β)[S]}{E}n{1(Δt)2[T]12Δt[R]+β[S]}{E}n1+β{f}n+1(12β){f}n+β{f}n1 $(5)

    View in Article

    $ {\boldsymbol{AX}} = {\boldsymbol{B}} $(6)

    View in Article

    $ {\boldsymbol{A}} = \frac{1}{{{{\left( {\Delta t} \right)}^2}}}\left[ T \right] + \frac{1}{{2\Delta t}}\left[ R \right] + \beta \left[ S \right] $(7)

    View in Article

    $ {{\boldsymbol{A}}_N}{\mathbf{ = }}{{\boldsymbol{G}}^{\rm{T}}}{\boldsymbol{AG}} $(8)

    View in Article

    $ {{\boldsymbol{A}}_i} = {\left( {{{\boldsymbol{\varPi}} _i}} \right)^{\rm{T}}}{\boldsymbol{A}}{{\boldsymbol{\varPi}} _i} , {{\boldsymbol{A}}_i} = {\left( {{\boldsymbol{\varPi }}_i^{}} \right)^{\rm{T}}}{\boldsymbol{A}}{{\boldsymbol{\varPi }}_i}{\text{, }}\quad i = x,y, {\textit{z}} $(9)

    View in Article

    $ p\left( t \right) = \sin \left[ {2\pi f\left( {t - {t_0}} \right)} \right]\exp \left[ { - 4\pi {{\left( {t - {t_0}} \right)}^2}/{\tau ^2}} \right] $(10)

    View in Article

    Weijie Wang, Zhenguo Zhao, Shaoliang Hu, Hanyu Li, Haijing Zhou. High-performance full-wave computational electromagnetic analysis for chip-system under electromagnetic pulse[J]. High Power Laser and Particle Beams, 2021, 33(12): 123015
    Download Citation