• Infrared and Laser Engineering
  • Vol. 45, Issue 1, 101001 (2016)
Xu Zuyan1、*, Bo Yong1, Peng Qinjun1, Zhang Yudong2, Wei Kai2, Xue Suijian3, and Feng Lu3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/irla201645.0101001 Cite this Article
    Xu Zuyan, Bo Yong, Peng Qinjun, Zhang Yudong, Wei Kai, Xue Suijian, Feng Lu. Progress on sodium laser guide star[J]. Infrared and Laser Engineering, 2016, 45(1): 101001 Copy Citation Text show less
    References

    [1] Babcock H W. The possibility of compensating astronomical seeing[C]//Publications of the Astronomical Society of the Pacific, 1953, 65: 229-236.

    [2] Hardy J W. Proc. Inst. Elect. Electron. Engrs[C]//Control designs for an adaptive optics system, 1978, 66: 651-697.

    [3] Happer W, MacDonald G J, Max C E, et al. Atmospheric-turbulence compensating by resonant optical backscattering from the sodium layer in the upper atmosphere[J]. J Opt Soc Am A, 1994, 11: 263-276.

    [4] Belenkii M S, Karis S J, Brown J M. Experimental validation of a technique to measure tilt from a laser guide star [J]. Optics Letters, 1999, 24: 637-639.

    [5] Thompson L A, Gardner C S. Experiments on laser guide stars at Mauna Kea Observatory for adaptive imaging in astronomy [J]. Nature (London), 1987, 328: 229-231.

    [6] Jelonek M P, Fugate R Q, Lange W J, et al. Characterization of artificial guide stars generated in the mesospheric sodium layer with a sum-frequency laser [J]. J Opt Soc Am A, 1994, 11 (2): 806-812.

    [7] Max C E, Olivier S S, Friedman H W, et al. Image improvement from a sodium-layer laser guide star adaptive optics system[J]. Science, 1997, 277 (12): 1649-1652.

    [8] Viswa Velur, Edward J K, Richard G D, et al. Implementation of the Chicago sum frequency laser at Palomar laser guide star test [C]//SPIE, Advancements in Adaptive Optics, 2004, 5490: 1033-1040.

    [9] Kuntschner, Harald. Operational concept of the VLT's adaptive optics facility and its instruments [C]//SPIE, 2012, 8448: 07-11.

    [10] Yutaka Hayanoa, Yoshihiko Saitoa, Meguru Itoa, et al. The laser guide star facility for subaru telescope [C]//SPIE, 2006, 6272: 627247-1-627247-7.

    [11] Allen K Hankla, Jarett Bartholomew, Ken Groff, et al. 20 W and 50 W solid-state sodium beacon guidestar laser systems for the Keck I and gemini south telescopes [C]//SPIE, 2006, 6272: 62721G-1-62721G-9.

    [12] Joyce R, Boyer C, Daggert L, et al. The laser guide star facility for the thirty meter telescope[C]//Advances in Adaptive Optics II, SPIE Proc, 2006, 6272: 1H1-1H6.

    [13] Pfrommer Thomas, Hickson Paul, She Chiaoyao. A large-aperture sodium fluorescence lidar with very high resolution for mesopause dynamics and adaptive optics studies[J]. Geophysical Research Letters, 2009, 36: 1-5.

    [14] Jian GeL, Jacobsena B P, Angel′ J R P, et al. Simultaneous measurements of sodium column density and laser guide star brightness [C]//SPIE, 1998, 3353: 242-253.

    [15] Ungar P J, Weiss D S, Riis E, et al. Optical molasses and multilevel atoms: Theory[J]. J Opt Soc Am B, 1989, 6(11): 2058-2071.

    [16] Rochester Simon M, Otarola Angel, Boyer Corinne. Modeling of pulsed-laser guide stars for the Thirty Meter Telescope project [J]. Journal of the Optical Society of America B-Optical Physics, 2012, 29(8): 2176-2188.

    [17] Avicola K, Brase J M, Morris J R, et al. Sodium-layer laser-guide-star experimental results[J]. J Opt Soc Am A, 1994, 11: 825-831.

    [18] Chester S Cardner, Byron M Welsh, Laird A Thompson. Design and performance analysis of adaptive optical telescopes using laser guide stars [C]//Proceedings of the IEEE, 1990, 78(11): 1721-1743.

    [19] Brent Ellerbroek, Corinne Boyer, Larry Daggert, et al. The TMT Laser Guide Star facility conceptual design report [Z]. TMT LGSF Team, TMT International Observatory, LLC, TMT.AOS.CDD.06.035.REL03, 2006, 25-25.

    [20] Peter L W, David L M, Antonin H B, et al. The W. M. keck observatory laser guide star adaptive optics system: overview[C]//Publications of the Astronomical Society of the Pacific, 2006, 118: 000-000.

    [21] Humphreys R A, Primmerman C A, Bradley L C, et al.Atmospheric-turbulence measurements using asynthetic beacon in the mesospheric sodium layer [J]. Opt Lett, 1991, 16: 1367-1369.

    [22] Foy R, Labeyrie A. Feasibility of adaptive telescope with laser probe [J]. Astron Astrophys, 1985, 152: 129-131.

    [23] Joshua C Bienfang, Craig A Denman, Brent W Grime, et al. 20 W of continuous-wave sodium D2 resonance radiation from sum-frequency generation with injection-locked lasers [J]. Opt Lett, 2003, 28(22): 2219-2221.

    [24] Craig A D, Paul D H, Gerald T M, et al. 20 W CW 589 nm sodium beacon excitation source for adaptive optical telescope applications[J]. Optical Materials, 2004, 26: 507-513.

    [25] Craig A Denmana, Paul D Hillmana, Gerald T Moorea, et al. Realization of a 50-Watt facility-class sodium guidestar pump laser [C]//SPIE, 2005, 5707: 46-49.

    [26] Céline d′Orgeville, Sarah Diggs, Vincent Fesquet, et al. Gemini south multi-conjugate adaptive optics (GeMS) laser guide star facility on-sky performance results[C]//SPIE, 2012, 8447: 84471Q-1-84471Q-21.

    [27] Hideki Takami, Stephen Colleya, Matt Dinkinsa, et al. Status of subaru laser guide star AO system[C]//SPIE, 2006, 6272: 62720C1-C10.

    [28] Yan Feng, Luke R Taylor, Domenico Bonaccini Calia. 25 W Raman -fiber -amplifier -based 589 nm laser for laser guide star[J]. Optics Express, 2009, 17(21): 19021-19026.

    [29] Luke R Taylor, Yan Feng, Domenico Bonaccini Calia. 50 W CW visible laser source at 589nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers[J]. Optics Express, 2010, 18(8): 8540-8555.

    [30] Christina B Olausson, Akira Shirakawa, Hiroki Maurayama, et al. Power-scalable long-wavelength Yb-doped photonic bandgap fiber sources[C]//SPIE, 2010, 7580: 758013-1-758013-12.

    [31] Pennington D M, Dawson J W, Beach R J, et al. Compact fiber laser for 589 nm laser guide star generation [C]//CLEO Europe, 2005: 532-532.

    [32] Surin A A, Larin S V. 14 W SHG in MgO:sPPLT at 589 nm from high power CW linearly polarized RFL [C]//Laser Optics, International Conference, 2014: 1-1.

    [33] Dupriez P, Farrell C, Ibsen M, et al. 1 W average power at 589 nm from a frequency doubled pulsed Raman fiber MOPA system[C]//SPIE, 2006, 6102: 61021G-1-61021G-6.

    [34] Jeys T H. Development of a mesospheric sodium laser beacons for adaptive optics[J]. The Lincoln Laboratory Journal, 1991, 4: 133-133.

    [35] Kibblewhite E J, Shi F. Design and field tests of an 8 W sum-frequency laser for adaptive optics[C]//SPIE, 1998, 3353: 300-319.

    [36] Viswa Velur, Edward J Kibblewhite, Richard G Dekany, et al. Implementation of the Chicago sum frequency laser at Palomar laser guide star test[C]//SPIE, 2004, 5490: 1033-1040.

    [37] Jennifer E Roberts, Antonin H Bouchez, John Angione, et al. Facilitizing the palomar AO Laser Guide Star system [C]//SPIE, 2008, 7015: 70152S-1-10.

    [38] Xie S, Bo Yong, Xu J, et al. A 7.5 W quasi-continuous-wave sodium D2 laser generated from single-pass sum-frequency generation in LBO crystal[J]. Appl Phys B, 2011, 102: 781-787.

    [39] Xu Zuyan, Xie Shiyong, Bo Yong, et al. Investigation of 30 W-class second-generation sodium beacon laser[J]. Acta Optica Sinica, 2011, 31(9): 094208-1-094208-4. (in Chinese)

    [40] Kai Wei, Yong Bo, Xianghui Xue, et al. Photon returns test of the pulsed sodium guide star laser on the 1.8 meter telescope[C]//SPIE, 2013, 8447: 84471R-1-84471R-7.

    [41] Angel Otarola. On-sky tests of the TIPC prototype laser results from tests held at the Lijiang observatory[Z]. TIPC Technical Review, TMT. AOS. PRE. 13.028. DRF01, 2013.

    [42] Otarola Angel, Hickson Paul, Bo Yong, et al. On-sky tests of a high-power pulsed-laser system for sodium laser guide star adaptive optics[J]. Journal of Astronomical Instrumentation, 2015: 22.

    [43] Lu Yanhua, Xie Gang, Pang Yu, et al. 340 mJ all solid state sodium beacon laser[J]. Chinese Journal of Lasers, 2012, 39(7): 0708004-7. (in Chinese)

    [44] Yan Hualu, Xie Gang, Zhang Lei, et al. High energy all solid state sodium beacon laser with line width of 0.6 GHz [J]. Appl Phys B, 2015, 118: 253-259.

    [45] Wang Feng, Chen Tianjiang, Luo Zhongxiang, et al. Experimental study on backscattering characteristics of sodium beacon based on a long pulse laser[J]. Acta Physica Sinica, 2014, 63(1): 014208-1-014208-6. (in Chinese)

    [46] Liu Jie, Wang Jianli, Lv Tianyu, et al. All-solid-state 589 nm laser and the brightness of excited sodium guide star[J]. Optics and Precision Engineering, 2014, 22(12): 3199-3204. (in Chinese)

    [47] Lei Zhang, Huawei Jiang, Shuzhen Cui, et al. Over 50 W 589 nm single frequency laser by frequency doubling of single Raman fiber amplifier [C]//CLEO, 2014: 1-2.

    [48] Yuan Y, Zhang L, Liu Y, et al. Sodium guide star laser generation by single-pass frequency doubling in a periodically poled near-stoichiometric LiTaO3 crystal[J]. China-Technological Sciences, 2013, 56(1): 125-128.

    [49] Tan Wei, Fu Xiaofang, Li Zhixin, et al. The wavelength tunable 589 nm laser output based on singly resonant sum-frequency generation and the measurement of saturate fluorescence spectrum of sodium atom[J]. Acta Physica Sinica, 2013, 62(9): 094211-1-094211-6. (in Chinese)

    [50] Gao Z L, Liu S D, Liu J J, et al. Self-frequency-doubled BaTeMo2O9 Raman laser emitting at 589 nm[J]. Optics Express, 2013, 21(6): 7821-7827.

    [51] Wang Yuning. Advances in all-solid-state yellow lasers at 589 nm[D]. Changchun: Changchun University of Science and Technology, 2012. (in Chinese)

    [52] Zhu Haiyong, Zhang Ge, Zhang Yaoju, et al. LD end-pumped c-cut Nd:YVO4 laser at 589 nm generated by sef-Raman conversion and frequency doubling[J]. Acta Physica Sinica, 2011, 60(9): 373-377. (in Chinese)

    [53] Li Lisha, Hou Yao, Chen Xiuyan, et al. Diode-side-pumped 589nm yellow laser with double acousto-optic Q-switche[J]. Laser Technology, 2009, 33(3): 273-275. (in Chinese)

    [54] Liang Xingbo, Yuan ligang, Jiang Dongsheng, et al. 10.5 W quasi continuous wave yellow laser at 589 nm[J]. Laser & Infrared, 2008, 38(9): 876-878. (in Chinese)

    [55] Pique Jean-Paul, Ioana C Moldovan, Vincent Fesquet, et al. Polychromatic Laser Guide Star using a single laser at 330 nm [C]//SPIE, 2006, 6272: 62723D-1-62723D-10.

    [56] Brent Ellerbroek, Corinne Boyer, Larry Daggert, et al. The TMT Laser Guide Star facility conceptual design report[Z]. TMT LGSF Team, TMT International Observatory, LLC, TMT.AOS.CDD.06.035.REL03, 2006: 26-26.

    CLP Journals

    [1] LIU De-xing, MU Yi-ning, SONG De, FAN Hai-bo, HAO Guo-yin. Preparation and Experiment Validation for a Waveguide-gate Film Complex Detector[J]. Acta Photonica Sinica, 2018, 47(10): 1004001

    [2] Jin Kai, Wei Kai, Li Min, Cheng Feng, Bo Yong, Zuo Junwei, Yao Ji, Bian Qi, Feng Lu, Xue Xianghui, Cheng Xuewu, Qian Xianmei, Angel Otarola, Zhang Yudong. Theoretical and experimental study on photometry of a sodium laser guide star[J]. Infrared and Laser Engineering, 2018, 47(1): 106005

    [3] Huang Jian, Wei Kai, Jin Kai, Wang Gongchang, Li Min, Zhang Yudong. Study on spot size and photon return of a sodium laser guide star[J]. Infrared and Laser Engineering, 2019, 48(1): 106004

    Xu Zuyan, Bo Yong, Peng Qinjun, Zhang Yudong, Wei Kai, Xue Suijian, Feng Lu. Progress on sodium laser guide star[J]. Infrared and Laser Engineering, 2016, 45(1): 101001
    Download Citation