• Journal of Infrared and Millimeter Waves
  • Vol. 37, Issue 2, 227 (2018)
XU Xue-Sen1、2、3、*, LIU Jian-Jun1、2, LIU Bin1、2, and LIU Da-Wei1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2018.02.016 Cite this Article
    XU Xue-Sen, LIU Jian-Jun, LIU Bin, LIU Da-Wei. Hapke′s parameters inverse method of Lunar analog sample[J]. Journal of Infrared and Millimeter Waves, 2018, 37(2): 227 Copy Citation Text show less
    References

    [2] Besse S, Sunshine J, Staid M, et al. A visible and near-infrared photometric correction for Moon Mineralogy Mapper (M3)[J]. Icarus, 2013, 222(1): 229-242.

    [3] Shkuratov Y G, Kaydash V G, Opanasenko N V. Iron and titanium abundance and maturity degree distribution on the lunar nearside[J]. Icarus, 1999, 137(2): 222-234.

    [4] Mcewen A, Eliason E, Lucey P, et al. Summary of radiometric calibration and photometric normalization steps for the Clementine UVVIS images[C]. Lunar and Planetary Science Conference, 1998: 1466.

    [5] Sato H, Robinson M S, Hapke B, et al. Resolved Hapke parameter maps of the Moon[J]. Journal of Geophysical Research: Planets, 2014, 119(8): 1775-1805.

    [6] Zhang J, Ling Z, Zhang W, et al. Photometric modeling of the Moon using Lommel-Seeliger function and Chang’E-1 IIM data[J]. Chinese Science Bulletin, 2013, 58(36):4588-4592.

    [7] Buratti B, Hicks M, Nettles J, et al. A wavelength-dependent visible and infrared spectrophotometric function for the Moon based on ROLO data[J]. Journal of Geophysical Research: Planets (1991~2012), 2011, 116(E6).

    [8] Hillier J K, Buratti B J, Hill K. Multispectral photometry of the Moon and absolute calibration of the Clementine UV/Vis camera[J]. Icarus, 1999, 141(2): 205-225.

    [9] Wu Y, Besse S, Li J-Y, et al. Photometric correction and in-flight calibration of Chang’E-1 Interference Imaging Spectrometer (IIM) data[J]. Icarus, 2013, 222(1): 283-295.

    [10] Wu Y, Xue B, Zhao B, et al. Global estimates of lunar iron and titanium contents from the Chang′E-1 IIM data[J]. Journal of Geophysical Research: Planets (1991–2012), 2012, 117(E2).

    [14] Shkuratov Y G, Stankevich D G, Kaydash V G, et al. Composition of the lunar surface as will be seen from SMART-1: A simulation using Clementine data[J]. Journal of Geophysical Research: Planets (1991~2012), 2003, 108(E4).

    [15] Qiao L, Xiao L, Zhao J, et al. Geological features and evolution history of Sinus Iridum, the Moon[J]. Planetary and Space Science, 2014, 101: 37-52.

    [16] Hapke B. Theory of reflectance and emittance spectroscopy[M]. Cambridge university press, 2012.

    [17] Souchon A L, Pinet P C, Chevrel S D, et al. An experimental study of Hapke’s modeling of natural granular surface samples[J]. Icarus, 2011, 215(1): 313-331.

    [18] Besse S, Yokota Y, Boardman J, et al. One Moon, many measurements 2: Photometric corrections[J]. Icarus, 2013, 226(1): 127-139.

    [19] Minnaert M. The reciprocity principle in lunar photometry[J]. The Astrophysical Journal, 1941, 93: 403-410.

    [20] Hapke B. Bidirectional reflectance spectroscopy: 1. Theory[J]. Journal of Geophysical Research: Solid Earth, 1981, 86(B4): 3039-3054.

    [21] Hapke B, WELLS E. Bidirectional reflectance spectroscopy: 2. Experiments and observations[J]. Journal of Geophysical Research: Solid Earth, 1981, 86(B4): 3055-3060.

    [22] Shepard M K, Helfenstein P. A test of the Hapke photometric model[J]. Journal of Geophysical Research: Planets, 2007, 112(E3).

    [23] Hapke B. Bidirectional reflectance spectroscopy: 3. Correction for macroscopic roughness[J]. Icarus, 1984, 59(1): 41-59.

    [24] Helfenstein P. The geological interpretation of photometric surface roughness[J]. Icarus, 1988, 73(3): 462-481.

    [25] Seeliger H. Theorie der Beleuchtung staubf rmiger kosmischer Massen insbesondere des Saturnringes[M]. Franz, 1893.

    [26] Hapke B, Nelson R, Smythe W. The opposition effect of the Moon: Coherent backscatter and shadow hiding[J]. Icarus, 1998, 133(1): 89-97.

    [27] Helfenstein P, Veverka J, Hillier J. The lunar opposition effect: A test of alternative models[J]. Icarus, 1997, 128(1): 2-14.

    [28] Hapke B. Bidirectional reflectance spectroscopy: 4. The extinction coefficient and the opposition effect[J]. Icarus, 1986, 67(2): 264-280.

    [29] McGuire A F, Hapke B W. An experimental study of light scattering by large, irregular particles[J]. Icarus, 1995, 113(1): 134-155.

    [30] Hapke B. Bidirectional reflectance spectroscopy 7: The single particle phase function hockey stick relation[J]. Icarus, 2012, 221(2): 1079-1083.

    [31] Hapke B, Denevi B, Sato H, et al. The wavelength dependence of the lunar phase curve as seen by the Lunar Reconnaissance Orbiter wide-angle camera[J]. Journal of Geophysical Research: Planets, 2012, 117(E12).

    [32] Yan B, Wang R, Gan F, et al. Minerals mapping of the lunar surface with Clementine UVVIS/NIR data based on spectra unmixing method and Hapke model[J]. Icarus, 2010, 208(1): 11-19.

    [33] Taylor L A, Pieters C M, Keller L P, et al. Lunar mare soils: Space weathering and the major effects of surface-correlated nanophase Fe[J]. Journal of Geophysical Research: Planets, 2001, 106(E11): 27985-27999.

    [34] Hamilton V E, Morris R V, Gruener J E, et al. Visible, near-infrared, and middle infrared spectroscopy of altered basaltic tephras: Spectral signatures of phyllosilicates, sulfates, and other aqueous alteration products with application to the mineralogy of the Columbia Hills of Gusev Crater, Mars[J]. Journal of Geophysical Research: Planets, 2008, 113(E12).

    XU Xue-Sen, LIU Jian-Jun, LIU Bin, LIU Da-Wei. Hapke′s parameters inverse method of Lunar analog sample[J]. Journal of Infrared and Millimeter Waves, 2018, 37(2): 227
    Download Citation