• Laser & Optoelectronics Progress
  • Vol. 48, Issue 8, 81902 (2011)
Chen Liezun1、2、* and Wen Shuangchun1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop48.081902 Cite this Article Set citation alerts
    Chen Liezun, Wen Shuangchun. Recent Advances and Methods of Optical Parametric Generation and Amplification for Tunable Ultra-Short Mid-Infrared Pulse[J]. Laser & Optoelectronics Progress, 2011, 48(8): 81902 Copy Citation Text show less
    References

    [1] S. Woutersen, U. Emmerichs, H. Bakker. Femtosecond mid-IR pump-probe spectroscopy of liquid water: Evidence for a two-component structure[J]. Science, 1997, 278(5338): 658~660

    [2] Robert K. Shelton, Long-Sheng Ma, Henry C. Kapteyn et al.. Phase coherent optical pulse synthesis from separate femtosecond lasers[J]. Science, 2001, 293(5533): 1286~1289

    [3] M. Nagai, R. Shimano, M. Kuwata-Gonokami. Electron-hole droplet formation in direct-gap semiconductors observed by mid-infrared pump-probe spectroscopy[J]. Phys. Rev. Lett., 2001, 86(25): 5795~5798

    [4] R. Kienberger, E. Goulielmakis, M. Uiberacker et al.. Atomic transient recorder[J]. Nature, 2004, 427(6977): 817~821

    [5] R. N. Zare. Laser control of chemical reactions[J]. Science, 1998, 279(5358): 1875~1879

    [6] J. Headrick, E. Diken, R. Walters et al.. Spectral signatures of hydrated proton vibrations in water clusters[J]. Science, 2005, 308(5729): 1765~1769

    [7] A. Assion, T. Baumert, M. Bergt et al.. Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses[J]. Science, 1998, 282(5390): 919~922

    [8] Zhao Xiaohui, Nie Zhichu, Zhang Lianshui et al.. Study on tea and its principal components by infrared spectroscopy [J]. Acta Optica Sinica, 2009, 29(2): 533~536

    [9] G. B. Serapiglia, K. L. Vodopyanov, C. C. Phillips. Nonequilibrium electron distributions in a three-subband InGaAs/InAlAs quantum well studied via double resonance spectroscopy[J]. Appl. Phys. Lett., 2000, 77(6): 857~859

    [10] Wang Liusan, Cao Zhensong, Wang Huan et al.. A widely tunable mid-Infrared difference frequency generation laser and its detection of atmospheric water[J]. Acta Optica Sinica, 2011, 31(4): 0414003

    [11] R. A. Kaindl, M. Woerner, T. Elsaesser et al.. Ultrafast mid-Infrared response of YBa2Cu3O7 [J]. Science, 2000, 287(5452): 470~473

    [12] D. Richter, A. Fried, B. Wert et al.. Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection[J]. Appl. Phys. B, 2002, 75(2): 281~288

    [13] S. H. Bhattacharya, T. J. Raiford, K. K. Murray. Infrared laser desorption/ionization on silicon[J]. Anal. Chem., 2002, 74(9): 2228~2231

    [14] J. Herbst. Femtosecond infrared spectroscopy of bacteriorhodopsin chromophore isomerization[J]. Science, 2002, 297(5582): 822~825

    [15] Lai Bo, Qin Hongke, Zhou Yuexi et al.. Rapid detection of the degradation of the typical pollutants from ABS wastewater using fourier transform infrared spectroscopy[J]. Acta Optica Sinica, 2011, 31(2): 0230001

    [16] P. Geiser, U. Willer, D. Walter et al.. A subnanosecond pulsed laser-source for mid-infrared LIDAR [J]. Appl. Phys. B, 2006, 83(2): 175~179

    [17] C. Bauer, P. Geiser, J. Burgmeier et al.. Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives[J]. Appl. Phys. B, 2006, 85(2): 251~256

    [18] P. Nemes, A. Vertes. Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry[J]. Anal. Chem., 2007, 79(21): 8098~8106

    [19] A. Nadezhdinskii, Y. Ponurovskii, D. Stavrovskii. Non-contact detection of explosives by means of a tunable diode laser spectroscopy[J]. Appl. Phys. B, 2008, 90(2): 361~364

    [20] Chui Dafu, Li Jie. The generation and latest progress of ultrashort mid-infrared pulse[J]. Wuli (Physics), 1994, 23(3): 173~178

    [21] M. Dunn, M. Ebrahimzadeh. Parametric generation of tunable light from continuous-wave to femtosecond pulses[J]. Science, 1999, 286(5444): 1513~1517

    [22] Deng Ying, Zhu Qihua, Zeng Xiaoming et al.. The generation and recent progress of ultrashort mid-infrared pulse[J]. Laser & Optoelectronics Progress, 2006, 43(8): 21~26

    [23] Sheng Quan, Ding Xin, Chen Na et al.. Continuous-wave tunable intra-cavity optical parametric oscillator and orange-red source[J]. Chinese J. Lasers, 2010, 37(11): 2821~2824

    [24] A. Godard. Infrared (2~12 μm) solid-state laser sources: a review[J]. C. R. Phys., 2007, 8(10): 1100~1128

    [25] Wu Xiaoli, Han Haiyan, Wang Wei et al.. Progress in mid-infrared femtosecond pulse generation with difference frequency techniques[J]. Physics, 2009, 38(4): 261~266

    [26] D. Brida, C. Manzoni, G. Cirmi et al.. Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers[J]. J. Opt., 2010, 12(1): 013001

    [27] D. Maas, D. Duncan, A. van der Meer et al.. Vibrational ladder climbing in NO by ultrashort infrared laser pulses[J]. Chem. Phys. Lett., 1997, 270(1~2): 45~49

    [28] C. Y. Wang, L. Kuznetsova, V. M. Gkortsas et al.. Mode-locked pulses from mid-infrared quantum cascade lasers[J]. Opt. Express, 2009, 17(15): 12929~12943

    [29] S. Mirov, V. Fedorov, I. Moskalev et al.. Progress in Cr2+ and Fe2+ doped mid-IR laser materials[J]. Laser Photonics Rev., 2010, 4(1): 21~41

    [30] E. Sorokin, I. Sorokina, J. Mandon et al.. Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 μm region with a Cr2+: ZnSe femtosecond laser[J]. Opt. Express, 2007, 15(25): 16540~16545

    [31] D. Edelstein, E. Wachman, C. Tang. Broadly tunable high repetition rate femtosecond optical parametric oscillator[J]. Appl. Phys. Lett., 1989, 54(18): 1728~1730

    [32] A. Tokmakoff, C. Marshall, M. Fayer. Optical parametric amplification of 1-kHz high-energy picosecond midinfrared pulses and application to infrared transient-grating experiments on diamond[J]. J. Opt. Soc. Am. B, 1993, 10(9): 1785~1791

    [33] F. Seifert, V. Petrov, M. Woerner. Solid-state laser system for the generation of mid-infrared femtosecond pulses tunable from 3.3 to 10 μm[J]. Opt. Lett., 1994, 19(23): 2009~2011

    [34] D. E. Spence, S. Wielandy, C. L. Tang et al.. High average power, high-repetition rate femtosecond pulse generation in the 1-5 μ m region using an optical parametric oscillator[J]. Appl. Phys. Lett., 1996, 68(4): 452~454

    [35] K. C. Burr, C. L. Tang, M. A. Arbore et al.. High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate[J]. Appl. Phys. Lett., 1997, 70(25): 3341~3343

    [36] G. Gale, G. Gallot, F. Hache et al.. Generation of intense highly coherent femtosecond pulses in the mid infrared[J]. Opt. Lett., 1997, 22(16): 1253~1255

    [37] J. Hong, A. Bawagan, S. Charbonneau et al.. Broadly tunable femtosecond pulse generation in the near and mid-infrared[J]. Appl. Opt., 1997, 36(9): 1894~1897

    [38] D. Reid, G. Kennedy, A. Miller et al.. Widely tunable, near-to mid-infrared femtosecond and picosecond optical parametric oscillators using periodically poled LiNbO3 and RbTiOAsO4[J]. IEEE J. Sel. Top. Quantum Electron., 1998, 4(2): 238~248

    [39] P. Phillips, S. Das, M. Ebrahimzadeh. High-repetition-rate, all-solid-state, Ti: sapphire-pumped optical parametric oscillator for the mid-infrared[J]. Appl. Phys. Lett., 2000, 77(4): 469~472

    [40] M. Ebrahimzadeh, P. Phillips, S. Das. Low-threshold mid-infrared optical parametric oscillation in periodically poled LiNbO3 synchronously pumped by a Ti: sapphire laser[J]. Appl. Phys. B, 2001, 72(7): 793~801

    [41] M. Tiihonen, V. Pasiskevicius, F. Laurell. Spectral and spatial limiting in an idler-resonant PPKTP optical parametric oscillator[J]. Opt. Commun., 2005, 250(1-3): 207~211

    [42] R. S. Kurti, K. D. Singer. Pulse compression in a silver gallium sulfide, midinfrared, synchronously pumped optical parametric oscillator[J]. J. Opt. Soc. Am. B, 2005, 22(10): 2157~2163

    [43] M. Henriksson, M. Tiihonen, V. Pasiskevicius et al.. Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator[J]. Appl. Phys. B, 2007, 88(1): 37~41

    [44] X. Bo, Z. Shu-Bao, G. Lin et al.. Period continuous tuning of an efficient mid-infrared optical parametric oscillator based on a fan-out periodically poled MgO-doped lithium niobate[J]. Chin. Phys. Lett., 2010, 27(1): 014206

    [45] K. Burr, C. Tang, M. Arbore et al.. Broadly tunable mid-infrared femtosecond optical parametric oscillator using all-solid-state-pumped periodically poled lithium niobate[J]. Opt. Lett., 1997, 22(19): 1458~1460

    [46] B. Zhou, C. Q. Xu, B. Chen. Comparison of difference frequency generation and cascaded χ2 based wavelength conversions in LiNbO3 quasi-phase-matched waveguides[J]. J. Opt. Soc. Am. B, 2003, 20(5): 846~852

    [47] M. Reed, M. Shepard. Tunable infrared generation using a femtosecond 250 kHz Ti: sapphire regenerative amplifier[J]. IEEE J. Quantum Electron., 1996, 32(8): 1273~1277

    [48] B. Golubovic, M. Reed. All-solid-state generation of 100 kHz tunable mid-infrared 50 fs pulses in type I and type II AgGaS2[J]. Opt. Lett., 1998, 23(22): 1760~1762

    [49] R. A. Kaindl, M. Wurm, K. Reimann et al.. Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 μm[J]. J. Opt. Soc. Am. B: Opt. Phys., 2000, 17(12): 2086~2094

    [50] C. Erny, K. Moutzouris, J. Biegert et al.. Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 μm from a compact fiber source[J]. Opt. Lett., 2007, 32(9): 1138~1140

    [51] D. Brida, C. Manzoni, G. Cirmi et al.. Generation of broadband mid-infrared pulses from an optical parametric amplifier[J]. Opt. Express, 2007, 15: 15035~15040

    [52] G. Holtom, R. Crowell, X. Xie. High-repetition-rate femtosecond optical parametric oscillator amplifier system near 3 μm[J]. J. Opt. Soc. Am. B, 1995, 12(9): 1723~1731

    [53] V. Petrov, F. Noack. Tunable femtosecond optical parametric amplifier in the mid-infrared with narrow-band seeding[J]. J. Opt. Soc. Am. B, 1995, 12(11): 2214~2221

    [54] V. Petrov, F. Noack. Mid-infrared femtosecond optical parametric amplification in potassium niobate[J]. Opt. Lett., 1996, 21(19): 1576~1578

    [55] V. Petrov, F. Noack, R. Stolzenberger. Seeded femtosecond optical parametric amplification in the mid-infrared spectral region above 3 μm[J]. Appl. Opt., 1997, 36(6): 1164~1172

    [56] F. Rotermund, V. Petrov, F. Noack et al.. Laser-diode-seeded operation of a femtosecond optical parametric amplifier with MgO:LiNbO3 and generation of 5-cycle pulses near 3 μm[J]. J. Opt. Soc. Am. B, 1999, 16(9): 1539~1545

    [57] Peng Yuefeng, Wei Xingbin, Wang Weimin et al.. High-efficiency 2.7 μm tunable mid-infrared laser[J]. Acta Optica Sinica, 2009, 30(9): 2624~2628

    [58] F. Rotermund, V. Petrov, F. Noack et al.. Optical parametric generation of femtosecond pulses up to 9 μm with LiInS2 pumped at 800 nm[J]. Appl. Phys. Lett., 2001, 78(18): 2623~2625

    [59] V. Petrov, F. Rotermund, F. Noack. Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals[J]. J. Opt. A, 2001, 3(3): R1~R19

    [60] Tan Huiming, Lin Hongyi, Zhang Bolin. Mid-infrared tunable all-solid-state optical parametric oscillator based on PPMgLN[J]. Chinese J. Lasers, 2010, 37(9): 2303~2306

    [61] J. Kafka, M. Watts, J. Pieterse. Synchronously pumped optical parametric oscillators with LiB3O5[J]. J. Opt. Soc. Am. B: Opt. Phys., 1995, 12(9): 2147~2157

    [62] A. Bonvalet, M. Joffre, J. L. Martin et al.. Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate[J]. Appl. Phys. Lett., 1995, 67(20): 2907~2909

    [63] O. Chalus, P. K. Bates, M. Smolarski et al.. Mid-IR short-pulse OPCPA with micro-Joule energy at 100 kHz[J]. Opt. Express, 2009, 17(5): 3587~3594

    [64] D. Brida, M. Marangoni, C. Manzoni et al.. Two-optical-cycle pulses in the mid-infrared from an optical parametric amplifier[J]. Opt. Lett., 2008, 33(24): 2901~2903

    [65] J. Price, T. Monro, H. Ebendorff-Heidepriem et al.. Mid-IR supercontinuum generation from nonsilica microstructured optical fibers[J]. IEEE J. Sel. Top. Quantum Electron., 2007, 13(3): 738~749

    [66] S. Hadrich, J. Rothhardt, F. Roser et al.. Degenerate optical parametric amplifier delivering sub 30 fs pulses with 2 GW peak power[J]. Opt. Express, 2008, 16(24): 19812~19820

    [67] J. Rothhardt, S. Hadrich, F. Roser et al.. 500 MW peak power degenerated optical parametric amplifier delivering 52 fs pulses at 97 kHz repetition rate[J]. Opt. Express, 2008, 16(12): 8981~8988

    [68] C. Aguergaray, O. Schmidt, J. Rothhardt et al.. Ultra-wide parametric amplification at 800 nm toward octave spanning[J]. Opt. Express, 2009, 17(7): 5153~5162

    [69] I. Jovanovic, B. J. Comaskey, C. A. Ebbers et al.. Optical parametric chirped-pulse amplifier as an alternative to Ti:sapphire regenerative amplifiers[J]. Appl. Opt., 2002, 41(15): 2923~2929

    [70] Chih-Wei Hsu, C. C. Yang. Broadband infrared generation with noncollinear optical parametric processes on periodically poled LiNbO3[J]. Opt. Lett., 2001, 26(18): 1412~1414

    [71] A. Baltuka, T. Fuji, T. Kobayashi. Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers[J]. Phys. Rev. Lett., 2002, 88(13): 133901

    [72] O. Isaienko, E. Borguet. Generation of ultra-broadband pulses in the near-IR by non-collinear optical parametric amplification in potassium titanyl phosphate[J]. Opt. Express, 2008, 16(6): 3949~3954

    [73] K. Yamakawa, M. Aoyama, Y. Akahane et al.. Ultra-broadband optical parametric chirped-pulse amplification using an Yb: LiYF4 chirped-pulse amplification pump laser[J]. Opt. Express, 2007, 15(8): 5018~5023

    [74] D. Kraemer, M. Cowan, R. Hua et al.. High-power femtosecond infrared laser source based on noncollinear optical parametric chirped pulse amplification[J]. J. Opt. Soc. Am. B, 2007, 24(4): 813~818

    [75] E. Sorokin, S. Naumov, I. Sorokina. Ultrabroadband infrared solid-state lasers[J]. IEEE J. Sel. Top. Quantum Electron., 2005, 11(3): 690~712

    [76] L. J. Waxer, V. Bagnoud, I. A. Begishev et al.. High-conversion-efficiency optical parametric chirped-pulse amplification system using spatiotemporally shaped pump pulses[J]. Opt. Lett., 2003, 28(14): 1245~1247

    [77] L. Cardoso, G. Figueira. Broadband amplification in non-linear crystals using controlled angular dispersion of signal beam[J]. Opt. Commun., 2005, 251(4-6): 405~414

    [78] J. C. Wang, J. Wang. Experimental and theoretical analysis of white-light seeded, collinear phase-matching, femtosecond optical parametric amplifiers[J]. J. Opt. Soc. Am. B, 2004, 21(1): 45~56

    [79] N. Ishii, L. Turi, V. S. Yakovlev et al.. Multimillijoule chirped parametric amplification of few-cycle pulses[J]. Opt. Lett., 2005, 30(5): 567~569

    [80] M. Aoyama, K. Yamakawa, Y. Akahane et al.. 0.85 PW, 33 fs Ti: sapphire laser[J]. Opt. Lett., 2003, 28(17): 1594~1596

    [81] K. Yamakawa, M. Aoyama, Y. Akahane et al.. Ultra-broadband optical parametric chirped-pulse amplification using an Yb: LiYF4 chirped-pulse amplification pump laser[J]. Opt. Express, 2007, 15(6): 5018~5023

    [82] N. Ishii, X. Gu, T. Fuji et al.. Development of a few-cycle infrared OPCPA system and its use in high-harmonic generation[C]. CLEO, 2007, CMK: CMK2

    [83] X. Gu, G. Marcus, Y. Deng et al.. Generation of carrier-envelope-phase-stable 2-cycle 740 μJ pulses at 2.1 μm carrier wavelength[J]. Opt. Express, 2009, 17(1): 62~69

    [84] O. Chalus, P. K. Bates, J. Biegert. Design and simulation of few-cycle optical parametric chirped pulseamplification at mid-IR wavelengths[J]. Opt. Express, 2008, 16(26): 21297~21304

    [85] C. Erny, L. Gallmann, U. Keller. High-repetition-rate femtosecond optical parametric chirped-pulse amplifier in the mid-infrared[J]. Appl. Phys. B, 2009, 96(2-3): 257~269

    [86] C. Heese, C. Phillips, L. Gallmann et al.. Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on aperiodically poled Mg: LiNbO3 [J]. Opt. Lett., 2010, 35(14): 2340~2342

    [87] L. S. Ma, R. Shelton, H. Kapteyn et al.. Sub-10-femtosecond active synchronization of two passively mode-locked Ti:sapphire oscillators[J]. Phys. Rev. A, 2001, 64(2): 021802

    [88] R. Shelton, S. Foreman, L. Ma et al.. Subfemtosecond timing jitter between two independent, actively synchronized, mode-locked lasers[J]. Opt. Lett., 2002, 27(5): 312~314

    [89] J. Kim, J. Cox, J. Chen et al.. Drift-free femtosecond timing synchronization of remote optical and microwave sources[J]. Nat. Photonics, 2008, 2(12): 733~736

    [90] T. Schibli, J. Kim, O. Kuzucu et al.. Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation[J]. Opt. Lett., 2003, 28(11): 947~949

    [91] J. Kim, J. Chen, J. Cox et al.. Attosecond-resolution timing jitter characterization of free-running mode-locked lasers[J]. Opt. Lett., 2007, 32(24): 3519~3521

    [92] E. Hommel, H. Allen. Broadband sum-frequency generation with two regenerative amplifiers: temporal overlap of femtosecond and picosecond light pulses[J]. Anal. Sci., 2001, 17(1): 137~139

    [93] L. Chen, S. Wen, Y. Wang et al.. Synchronization and relative timing jitter measurement of femtosecond and picosecond laser regenerative amplifiers[J]. IEEE J. Quantum Electron., 2010, 46(9): 1354~1359

    [94] L. Chen, S. Wen, Y. Wang et al.. Ultrabroadband optical parametric chirped-pulse amplifier using a fan-out periodically poled crystal with spectral spatial dispersion[J]. Phys. Rev. A, 2010, 82(10): 043843

    CLP Journals

    [1] Peng Jue, Wang Weimin, Peng Yuefeng, Wei Xingbin, Luo Xinwang, Gao Jianrong, Li Deming. Optical Parametric Amplifier Based on PPMgO:CLN[J]. Chinese Journal of Lasers, 2013, 40(6): 602004

    Chen Liezun, Wen Shuangchun. Recent Advances and Methods of Optical Parametric Generation and Amplification for Tunable Ultra-Short Mid-Infrared Pulse[J]. Laser & Optoelectronics Progress, 2011, 48(8): 81902
    Download Citation