• Acta Photonica Sinica
  • Vol. 51, Issue 8, 0851512 (2022)
Yao ZHAO, Linhan LIN*, and Hongbo SUN*
Author Affiliations
  • State Key Laboratory of Precision Measurement Technology and Instruments,Department of Precision Instrument,Tsinghua University,Beijing 100084,China
  • show less
    DOI: 10.3788/gzxb20225108.0851512 Cite this Article
    Yao ZHAO, Linhan LIN, Hongbo SUN. On-chip Optical Interconnection Based on Two-photon Polymerization(Invited)[J]. Acta Photonica Sinica, 2022, 51(8): 0851512 Copy Citation Text show less
    References

    [1] J PFEIFLE, V BRASCH, M LAUERMANN et al. Coherent terabit communications with microresonator Kerr frequency combs. Nature Photonics, 8, 375-380(2014).

    [2] R MARCHETTI, V VITALI, C LACAVA et al. Group-velocity dispersion in SOI-based channel waveguides with reduced-height. Optics Express, 25, 9761-9767(2017).

    [3] C DOERR. Silicon photonic integration in telecommunications. Frontiers in Physics, 3, 37(2015).

    [4] D KOHLER, G SCHINDLER, L HAHN et al. Biophotonic sensors with integrated Si3N4-organic hybrid (SiNOH) lasers for point-of-care diagnostics. Light: Science & Applications, 10, 64(2021).

    [5] J M ARRAZOLA, V BERGHOLM, K BRÁDLER et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature, 591, 54-60(2021).

    [6] J WANG, S PAESANI, Y DING et al. Multidimensional quantum entanglement with large-scale integrated optics. Science, 360, 285(2018).

    [7] S YU, J LU, V GINIS et al. On-chip optical tweezers based on freeform optics. Optica, 8, 409-414(2021).

    [8] R MARCHETTI, C LACAVA, L CARROLL et al. Coupling strategies for silicon photonics integrated chips. Photonics Research, 7, 201-239(2019).

    [9] J WANG, Y LONG. On-chip silicon photonic signaling and processing: a review. Science Bulletin, 63, 1267-1310(2018).

    [10] D VERMEULEN, C V POULTON. Optical interfaces for silicon photonic circuits. Proceedings of the IEEE, 106, 2270-2280(2018).

    [11] W W WONG, Z SU, N WANG et al. Epitaxially grown InP micro-ring lasers. Nano Letters, 21, 5681-5688(2021).

    [12] D SAXENA, S MOKKAPATI, P PARKINSON et al. Optically pumped room-temperature GaAs nanowire lasers. Nature Photonics, 7, 963-968(2013).

    [13] L CHEN, Q XU, M G WOOD et al. Hybrid silicon and lithium niobate electro-optical ring modulator. Optica, 1, 112-118(2014).

    [14] A C MENG, M R BRAUN, Y WANG et al. Growth mode control for direct-gap core/shell Ge/GeSn nanowire light emission. Materials Today, 40, 101-113(2020).

    [15] P PINTUS, D HUANG, C ZHANG et al. Microring-based optical isolator and circulator with integrated electromagnet for silicon photonics. Journal of Lightwave Technology, 35, 1429-1437(2017).

    [16] B SNYDER, P O BRIEN. Packaging process for grating-coupled silicon photonic waveguides using angle-polished fibers. IEEE Transactions on Components, Packaging and Manufacturing Technology, 3, 954-959(2013).

    [17] D BENEDIKOVIC, C ALONSO-RAMOS, P CHEBEN et al. High-directionality fiber-chip grating coupler with interleaved trenches and subwavelength index-matching structure. Optics Letters, 40, 4190-4193(2015).

    [18] D LIANG, G ROELKENS, R BAETS et al. Hybrid integrated platforms for silicon photonics. Materials, 3, 1782-1802(2010).

    [19] T TEKIN. Review of packaging of optoelectronic, photonic, and MEMS components. IEEE Journal of Selected Topics in Quantum Electronics, 17, 704-719(2011).

    [20] P WEN, P TIWARI, S MAUTHE et al. Waveguide coupled Ⅲ-Ⅴ photodiodes monolithically integrated on Si. Nature Communications, 13, 909(2022).

    [21] C XIANG, J LIU, J GUO et al. Laser soliton microcombs heterogeneously integrated on silicon. Science, 373, 99-103(2021).

    [22] Z YAN, Y HAN, L LIN et al. A monolithic InP/SOI platform for integrated photonics. Light: Science & Applications, 10, 200(2021).

    [23] J HU, M-F YU. Meniscus-confined three-dimensional electrodeposition for direct writing of wire bonds. Science, 329, 313-316(2010).

    [24] J T KIM, S K SEOL, J PYO et al. Three-dimensional writing of conducting polymer nanowire arrays by meniscus-guided polymerization. Advanced Materials, 23, 1968-1970(2011).

    [25] H W RHEE, J SHIM, J Y KIM et al. Direct optical wire bonding through open-to-air polymerization for silicon photonic chips. Optics Letters, 47, 714-717(2022).

    [26] G L ROTH, S KEFER, S HESSLER et al. Polymer photonic crystal waveguides generated by femtosecond laser. Laser & Photonics Reviews, 2100215(2021).

    [27] D WEI, C WANG, H WANG et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nature Photonics, 12, 596-600(2018).

    [28] Z Z LI, L WANG, H FAN et al. O-FIB: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment. Light: Science & Applications, 9, 41(2020).

    [29] T A SCHAEDLER, A J JACOBSEN, A TORRENTS et al. Ultralight metallic microlattices. Science, 334, 962-965(2011).

    [30] G E LIO, A FERRARO, T RITACCO et al. Leveraging on ENZ metamaterials to achieve 2D and 3D hyper-resolution in two-photon direct laser writing. Advanced Materials, 33, 2008644(2021).

    [31] Z S HOU, X XIONG, J J CAO et al. On-chip polarization rotators. Advanced Optical Materials, 7, 1900129(2019).

    [32] Y ZHAO, Y CHEN, Z S HOU et al. Polarization-dependent Bloch oscillations in optical waveguides. Optics Letters, 47, 617-620(2022).

    [33] A AHMADI, K TILL, Y HAFTING et al. Additive manufacturing of laminar flow cells for single-molecule experiments. Scientific Reports, 9, 16784(2019).

    [34] Z WEI, T SUN, S SHIMODA et al. Bio-inspired engineering of a perfusion culture platform for guided three-dimensional nerve cell growth and differentiation. Lab on a Chip, 22, 1006-1017(2022).

    [35] N LINDENMANN, G BALTHASAR, D HILLERKUSS et al. Photonic wire bonding: a novel concept for chip-scale interconnects. Optics Express, 20, 17667-17677(2012).

    [36] R D ZVAGELSKY, D A CHUBICH, D A KOLYMAGIN et al. Three-dimensional polymer wire bonds on a chip: morphology and functionality. Journal of Physics D: Applied Physics, 53, 355102(2020).

    [37] M BLAICHER, M R BILLAH, J KEMAL et al. Hybrid multi-chip assembly of optical communication engines by in situ 3D nano-lithography. Light: Science & Applications, 9, 71(2020).

    [38] N LINDENMANN, S DOTTERMUSCH, M L GOEDECKE et al. Connecting silicon photonic circuits to multicore fibers by photonic wire bonding. Journal of Lightwave Technology, 33, 755-760(2015).

    [39] M R BILLAH, M BLAICHER, T HOOSE et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica, 5, 876-883(2018).

    [40] O A JIMENEZ GORDILLO, S CHAITANYA, Y C CHANG et al. Plug-and-play fiber to waveguide connector. Optics Express, 27, 20305-20310(2019).

    [41] K R SAFRONOV, V O BESSONOV, D V AKHREMENKOV et al. Miniature otto prism coupler for integrated photonics. Laser & Photonics Reviews, 2100542(2022).

    [42] J MOUGHAMES, X PORTE, M THIEL et al. Three-dimensional waveguide interconnects for scalable integration of photonic neural networks. Optica, 7, 640-646(2020).

    [43] P I DIETRICH, M BLAICHER, I REUTER et al. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration. Nature Photonics, 12, 241-247(2018).

    [44] X WEN, B ZHANG, W WANG et al. 3D-printed silica with nanoscale resolution. Nature Materials, 20, 1506-1511(2021).

    [45] F KOTZ, A S QUICK, P RISCH et al. Two-photon polymerization of nanocomposites for the fabrication of transparent fused silica glass microstructures. Advanced Materials, 33, 2006341(2021).

    Yao ZHAO, Linhan LIN, Hongbo SUN. On-chip Optical Interconnection Based on Two-photon Polymerization(Invited)[J]. Acta Photonica Sinica, 2022, 51(8): 0851512
    Download Citation