• Photonics Research
  • Vol. 10, Issue 12, 2802 (2022)
Wen Shao1、2、3、†, Yang Wang1、2、3、†, Shuaiwei Jia1、2、3、†, Zhuang Xie1、2、3, Duorui Gao1、2、3, Wei Wang1、3, Dongquan Zhang1, Peixuan Liao1、3, Brent E. Little1、3, Sai T. Chu4, Wei Zhao2、3, Wenfu Zhang1、3, Weiqiang Wang1、3、5、*, and Xiaoping Xie1、2、3、6、*
Author Affiliations
  • 1State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi’an 710119, China
  • 2School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • 4Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China
  • 5e-mail:
  • 6e-mail:
  • show less
    DOI: 10.1364/PRJ.473559 Cite this Article Set citation alerts
    Wen Shao, Yang Wang, Shuaiwei Jia, Zhuang Xie, Duorui Gao, Wei Wang, Dongquan Zhang, Peixuan Liao, Brent E. Little, Sai T. Chu, Wei Zhao, Wenfu Zhang, Weiqiang Wang, Xiaoping Xie. Terabit FSO communication based on a soliton microcomb[J]. Photonics Research, 2022, 10(12): 2802 Copy Citation Text show less
    References

    [1] Z. Zhu, M. Janasik, A. Fyffe, D. Hay, Y. Zhou, B. Kantor, T. Winder, R. W. Boyd, G. Leuchs, Z. Shi. Compensation-free high-dimensional free-space optical communication using turbulence-resilient vector beams. Nat. Commun., 12, 1666(2021).

    [2] X. Pan, Y. Liu, L. Guo. Asymmetric constellation transmission for a coherent free-space optical system with spatial diversity. Opt. Lett., 46, 5157-5160(2021).

    [3] S. Chauhan, R. Miglani, L. Kansal, G. S. Gaba, M. Masud. Performance analysis and enhancement of free space optical links for developing state-of-the-art smart city framework. Photonics, 7, 132(2020).

    [4] A. Jahid, M. H. Alsharif, T. J. Hall. A contemporary survey on free space optical communication: potentials, technical challenges, recent advances and research direction. J. Netw. Comput. Appl., 200, 103311(2022).

    [5] M. Toyoshima. Recent trends in space laser communications for small satellites and constellations. J. Lightwave Technol., 39, 693-699(2020).

    [6] V. C. Duarte, J. G. Prata, C. F. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, M. Kechagias, L. Stampoulidis, J. Anzalchi, M. V. Drummond. Modular coherent photonic-aided payload receiver for communications satellites. Nat. Commun., 10, 1984(2019).

    [7] H. Kaushal, G. Kaddoum. Optical communication in space: challenges and mitigation techniques. Commun. Surveys Tuts., 19, 57-96(2016).

    [8] T. Kubo-oka, H. Kunimori, K. Suzuki, Y. Koyama, K. Shiratama, Y. Munemasa, H. Takenaka, D. Kolev, A. C. Casado, T. Phuc, M. Toyoshima. Development of ‘HICALI’: high speed optical feeder link system between GEO and ground. International Conference on Space Optics, 2158-2165(2019).

    [9] A. Lorences-Riesgo, F. P. Guiomar, A. N. Sousa, A. L. Teixeira, N. J. Muga, M. C. R. Medeiros, P. P. Monteiro. 200  G outdoor free-space-optics link using a single-photodiode receiver. J. Lightwave Technol., 38, 394-400(2020).

    [10] R. Miglani, J. S. Malhotra. Performance enhancement of high-capacity coherent DWDM free-space optical communication link using digital signal processing. Photon. Netw. Commun., 38, 326-342(2019).

    [11] A. Dochhan, J. Poliak, J. Surof, M. Richerzhagen, H. Kelemu, R. M. Calvo. 13.16  Tbit/s free-space optical transmission over 10.45  km for Geostationary satellite feeder-links. 20th ITG Symposium on Photonic Networks, 12-14(2019).

    [12] K. Matsuda, M. Binkai, S. Koshikawa, T. Yoshida, H. Sano, Y. Konishi, N. Suzuki. Demonstration of a real-time 14  Tb/s multi-aperture transmit single-aperture receive FSO System with class 1 eye-safe transmit intensity. J. Lightwave Technol., 40, 1494-1501(2022).

    [13] W. Wang, L. Wang, W. Zhang. Advances in soliton microcomb generation. Adv. Photonics, 2, 034001(2020).

    [14] X. Zhang, Q. Cao, Z. Wang, Y. Liu, C. Qiu, L. Yang, Q. Gong, Y. Xiao. Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nat. Photonics, 13, 21-24(2019).

    [15] H. Chen, Q. Ji, H. Wang, Q. Yang, Q. Cao, Q. Gong, X. Yi, Y. Xiao. Chaos-assisted two-octave-spanning microcombs. Nat. Commun., 11, 2336(2020).

    [16] X. Jiang, L. Shao, S. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, Y. Xiao. Chaos-assisted broadband momentum transformation in optical microresonators. Science, 358, 344-347(2017).

    [17] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [18] X. Yi, Q. Yang, K. Yang, M. Suh, K. Vahala. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica, 2, 1078-1085(2015).

    [19] S. Wan, R. Niu, Z. Wang, J. Peng, M. Li, J. Li, G. Guo, C. Zou, C. Dong. Frequency stabilization and tuning of breathing solitons in Si3N4 microresonators. Photonics Res., 8, 1342-1349(2020).

    [20] P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, C. Koos. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274-279(2017).

    [21] Y. Geng, X. Huang, W. Cui, Y. Ling, B. Xu, J. Zhang, X. Yi, B. Wu, S.-W. Huang, K. Qiu, C. W. Wong, H. Zhou. Terabit optical OFDM superchannel transmission via coherent carriers of a hybrid chip-scale soliton frequency comb. Opt. Lett., 43, 2406-2409(2018).

    [22] Y. Geng, H. Zhou, W. Cui, X. Han, Q. Zhang, B. Liu, G. Deng, Q. Zhou, K. Qiu. Coherent optical communications using coherence-cloned Kerr soliton microcombs. Nat. Commun., 13, 1070(2022).

    [23] M. Mazur, M. Suh, A. Fülöp, J. Schröder, V. Torres-Company, M. Karlsson, K. J. Vahala, P. A. Andrekson. High spectral efficiency coherent superchannel transmission with soliton microcombs. J. Lightwave Technol., 39, 4367-4373(2021).

    [24] L. Yao, P. Liu, H. Chen, Q. Gong, Q. Yang, Y. Xiao. Soliton microwave oscillators using oversized billion Q optical microresonators. Optica, 9, 561-564(2022).

    [25] A. Rizzo, A. Novick, V. Gopal, B. Y. Kim, X. Ji, S. Daudlin, Y. Okawachi, Q. Cheng, M. Lipson, A. L. Gaeta, K. Bergman. Integrated Kerr frequency comb-driven silicon photonic transmitter(2021).

    [26] S. Fujii, S. Tanaka, T. Ohtsuka, S. Kogure, K. Wada, H. Kumazaki, S. Tasaka, Y. Hashimoto, Y. Kobayashi, T. Araki, K. Furusawa, N. Sekine, S. Kawanishi, T. Tanabe. Dissipative Kerr soliton microcombs for FEC-free optical communications over 100 channels. Opt. Express, 30, 1351-1364(2022).

    [27] A. Fülöp, M. Mazur, A. Lorences-Riesgo, Ó. B. Helgason, P. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, V. Torres-Company. High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators. Nat. Commun., 9, 1598(2018).

    [28] H. Shu, L. Chang, Y. Tao, B. Shen, W. Xie, M. Jin, A. Netherton, Z. Tao, X. Zhang, R. Chen, B. Bai, J. Qin, S. Yu, X. Wang, J. E. Bowers. Microcomb-driven silicon photonic systems. Nature, 605, 457-463(2022).

    [29] B. Corcoran, M. Tan, X. Xu, A. Boes, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, D. J. Moss. Ultra-dense optical data transmission over standard fibre with a single chip source. Nat. Commun., 11, 2568(2020).

    [30] M. Tan, B. Corcoran, X. Xu, J. Wu, A. Boes, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, D. J. Moss. Optical data transmission at 44  terabits/s with a Kerr soliton crystal microcomb. Proc. SPIE, 11713, 117130C(2021).

    [31] W. Wang, Z. Lu, W. Zhang, S. T. Chu, B. E. Little, L. Wang, X. Xie, M. Liu, Q. Yang, L. Wang, J. Zhao, G. Wang, Q. Sun, Y. Liu, Y. Wang, W. Zhao. Robust soliton crystals in a thermally controlled microresonator. Opt. Lett., 43, 2002-2005(2018).

    [32] Z. Lu, H. Chen, W. Wang, L. Yao, Y. Wang, Y. Yu, B. E. Little, S. T. Chu, Q. Gong, W. Zhao, X. Yi, Y. Xiao, W. Zhang. Synthesized soliton crystals. Nat. Commun., 12, 3179(2021).

    [33] X. Wang, P. Xie, W. Wang, Y. Wng, Z. Lu, L. Wang, S. T. Chu, B. E. Little, W. Zhao, W. Zhang. Program-controlled single soliton microcomb source. Photonics Res., 9, 66-72(2021).

    [34] Y. Wang, Z. Wang, X. Wang, W. Shao, L. Huang, B. Liang, B. E. Little, S. T. Chu, W. Zhao, W. Wang, W. Zhang. Scanning dual-microcomb spectroscopy. Sci. China Phys. Mech. Astron., 65, 294211(2022).

    [35] K. Tamura, S. B. Alexander, V. W. S. Chan. Phase-noise-canceled differential-phase-shift-keying PNC-DPSK modulation for coherent optical communication systems. Optical Fiber Communication Conference, WG2(1988).

    [36] P. Marin-Palomo, J. N. Kemal, T. J. Kippenberg, W. Freude, S. Randel, C. Koos. Performance of chip-scale optical frequency comb generators in coherent WDM communications. Opt. Express, 28, 12897-12910(2020).

    [37] A. S. El-Wakeel, N. A. Mohammed, M. H. Aly. Free space optical communications system performance under atmospheric scattering and turbulence for 850 and 1550  nm operation. Appl. Opt., 55, 7276-7286(2016).

    Wen Shao, Yang Wang, Shuaiwei Jia, Zhuang Xie, Duorui Gao, Wei Wang, Dongquan Zhang, Peixuan Liao, Brent E. Little, Sai T. Chu, Wei Zhao, Wenfu Zhang, Weiqiang Wang, Xiaoping Xie. Terabit FSO communication based on a soliton microcomb[J]. Photonics Research, 2022, 10(12): 2802
    Download Citation