• Laser & Optoelectronics Progress
  • Vol. 58, Issue 14, 1410002 (2021)
Haitao Yin* and Hao Deng
Author Affiliations
  • College of Automation and College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
  • show less
    DOI: 10.3788/LOP202158.1410002 Cite this Article Set citation alerts
    Haitao Yin, Hao Deng. Dual Residual Denoising Network Based on Hybrid Attention[J]. Laser & Optoelectronics Progress, 2021, 58(14): 1410002 Copy Citation Text show less
    Network structure of DnCNN
    Fig. 1. Network structure of DnCNN
    Structure of ResNet block and SE-ResNet block. (a) Traditional ResNet block; (b) SE-ResNet block
    Fig. 2. Structure of ResNet block and SE-ResNet block. (a) Traditional ResNet block; (b) SE-ResNet block
    Structure of non-local block
    Fig. 3. Structure of non-local block
    Structure of traditional residual network
    Fig. 4. Structure of traditional residual network
    Structure of dual residual network
    Fig. 5. Structure of dual residual network
    Structure of HDDNet network model
    Fig. 6. Structure of HDDNet network model
    Structure of D-block module
    Fig. 7. Structure of D-block module
    Structure of ResNet block. (a) Traditional ResNet block; (b) simplified ResNet block
    Fig. 8. Structure of ResNet block. (a) Traditional ResNet block; (b) simplified ResNet block
    Structure of DNL-block module
    Fig. 9. Structure of DNL-block module
    Test images
    Fig. 10. Test images
    Denoised images of different algorithms on Starfish (σ=30). (a) Original image; (b) noisy image; (c) DnCNN; (d) FDnCNN; (e) FFDNet; (f) IRCNN; (g) DuRN; (h) HDDNet
    Fig. 11. Denoised images of different algorithms on Starfish (σ=30). (a) Original image; (b) noisy image; (c) DnCNN; (d) FDnCNN; (e) FFDNet; (f) IRCNN; (g) DuRN; (h) HDDNet
    Denoised images of different algorithms on Butterfly (σ=50). (a) Original image; (b) noisy image; (c) DnCNN; (d) FDnCNN; (e) FFDNet; (f) IRCNN; (g) DuRN; (h) HDDNet
    Fig. 12. Denoised images of different algorithms on Butterfly (σ=50). (a) Original image; (b) noisy image; (c) DnCNN; (d) FDnCNN; (e) FFDNet; (f) IRCNN; (g) DuRN; (h) HDDNet
    Denoised images for pepper & salt noise (noise density is 10%). (a)--(g) Pepper & salt noise images; (h)--(n) denoised images
    Fig. 13. Denoised images for pepper & salt noise (noise density is 10%). (a)--(g) Pepper & salt noise images; (h)--(n) denoised images
    ModuleConv-A kernel sizeConv-B kernel sizeDilation
    DNL-block1531
    D-block1751
    D-blcok2752
    D-block31172
    D-block41151
    DNL-block21173
    Table 1. Parameters of DNL-block and D-block modules
    Noise levelMethodCameramanHousePeppersStarfishButterflyAirplaneParrotAverage
    σ=15DnCNN32.5934.9933.2432.1333.2531.6731.8832.82
    FDnCNN32.5935.1333.1732.0733.1431.6731.8532.80
    FFDNet32.3735.0533.0231.9532.9231.5531.7932.66
    IRCNN32.5334.8833.2131.9632.9831.6631.8832.73
    DuRN32.2934.7333.0232.0132.9531.6231.8032.63
    HDDNet32.5934.9633.2132.1533.2231.6931.8632.81
    σ=30DnCNN29.2832.2929.8528.2829.4228.1928.5929.42
    FDnCNN29.4332.5929.9228.3729.4328.2128.7029.52
    FFDNet29.2832.5729.8728.3429.3928.1328.6529.46
    IRCNN29.2832.1929.7928.1429.2228.1428.6229.34
    DuRN28.9932.2629.5328.3529.2428.0828.5229.28
    HDDNet29.4332.4329.9828.5629.5228.2328.6529.53
    σ=50DnCNN27.2629.9627.3525.626.8325.8326.4227.04
    FDnCNN27.3530.2527.4125.6626.8425.8126.5927.13
    FFDNet27.3430.3627.4125.6826.9225.7926.5727.14
    IRCNN27.1629.9027.3325.4826.6625.7826.4826.97
    DuRN26.9130.1427.1325.7126.7325.8726.3526.98
    HDDNet27.3330.3527.3725.8926.9725.9026.4727.18
    Table 2. PSNR values of different methods
    Noise levelMethodCameramanHousePeppersStarfishButterflyAirplaneParrotAverage
    σ=15DnCNN0.91310.88550.91210.91460.95010.90770.90490.9126
    FDnCNN0.91320.88700.91190.91350.95030.90800.90470.9127
    FFDNet0.91180.88770.91120.91260.94910.90740.90450.9120
    IRCNN0.91130.88310.91070.91230.94770.90640.90390.9108
    DuRN0.90890.88340.91530.92050.94870.90710.90780.9131
    HDDNet0.91370.88580.91170.91470.95050.90810.90500.9128
    Noise levelMethodCameramanHousePeppersStarfishButterflyAirplaneParrotAverage
    σ=30DnCNN0.85000.85180.86090.84530.90250.85110.84250.8577
    FDnCNN0.85930.85420.86480.84630.90710.85370.84630.8617
    FFDNet0.85990.85420.86520.84570.90730.85370.84670.8618
    IRCNN0.85300.84740.85610.84120.89900.84750.84270.8553
    DuRN0.84820.85070.86340.85410.90200.84940.84740.8593
    HDDNet0.86110.85380.86610.85020.90820.85450.84550.8628
    σ=50DnCNN0.80770.81850.80900.77220.85130.79780.79520.8074
    FDnCNN0.81070.82450.81370.77470.85530.79860.79950.8110
    FFDNet0.81380.82730.81640.77500.85850.79970.80040.8130
    IRCNN0.80280.81590.80440.76750.84540.79530.79530.8038
    DuRN0.79540.82110.80820.78000.84510.79540.79210.8053
    HDDNet0.81420.82930.81440.78120.85750.80120.79710.8136
    Table 3. SSIM values of different methods
    Noise levelMethodCameramanHousePeppersStarfishButterflyAirplaneParrotAverage
    σ=15DnCNN5.994.545.556.315.556.666.495.87
    FDnCNN5.994.475.606.365.626.656.525.89
    FFDNet6.144.515.706.445.766.746.565.98
    IRCNN6.034.605.576.445.726.666.495.93
    DuRN6.204.685.706.405.746.696.555.99
    HDDNet5.984.565.576.305.576.646.515.87
    σ=30DnCNN8.766.198.209.828.629.939.488.72
    FDnCNN8.615.988.149.738.619.919.368.62
    FFDNet8.766.008.199.768.6510.009.428.68
    IRCNN8.766.278.269.998.829.999.468.74
    DuRN9.066.228.519.758.8010.059.578.85
    HDDNet8.616.098.149.528.529.899.418.60
    σ=50DnCNN11.058.1010.9413.3211.6213.0412.1811.46
    FDnCNN10.947.8310.8713.2911.6013.0711.9511.36
    FFDNet11.087.7410.8713.2611.5013.0911.9711.36
    IRCNN11.188.1510.9613.5711.8513.1112.1011.56
    DuRN11.517.9411.2213.2111.7512.9812.2811.55
    HDDNet10.977.7410.9112.9511.4412.9312.1111.29
    Table 4. RMSE values of different methods
    Haitao Yin, Hao Deng. Dual Residual Denoising Network Based on Hybrid Attention[J]. Laser & Optoelectronics Progress, 2021, 58(14): 1410002
    Download Citation