• Laser & Optoelectronics Progress
  • Vol. 56, Issue 6, 061401 (2019)
Xuheng Gao** and Lizhi Wu*
Author Affiliations
  • School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
  • show less
    DOI: 10.3788/LOP56.061401 Cite this Article Set citation alerts
    Xuheng Gao, Lizhi Wu. Passively Q-Switched Solid State Monolithic Laser Based on Composite Nd∶YAG/Cr∶YAG Crystal[J]. Laser & Optoelectronics Progress, 2019, 56(6): 061401 Copy Citation Text show less
    References

    [1] Dearden G, Shenton T. Laser ignited engines: Progress, challenges and prospects[J]. Optics Express, 21, A1113-A1125(2013). http://www.ncbi.nlm.nih.gov/pubmed/24514930

    [2] Tauer J, Kofler H, Wintner E. Laser-initiated ignition[J]. Laser & Photonics Reviews, 4, 99-122(2010).

    [3] Chen M, Dou Z G, Xi W X. Advances in methods of laser-induced plasma ignition[J]. Laser & Optoelectronics Progress, 55, 030010(2018).

    [4] Nakaya S, Iseki S, Gu X J et al. Flame kernel formation behaviors in close dual-point laser breakdown spark ignition for lean methane/air mixtures[J]. Proceedings of the Combustion Institute, 36, 3441-3449(2017). http://www.sciencedirect.com/science/article/pii/S1540748916303157

    [5] Phuoc T X. Single-point versus multi-point laser ignition: experimental measurements of combustion times and pressures[J]. Combustion and Flame, 122, 508-510(2000). http://www.sciencedirect.com/science/article/pii/S0010218000001371

    [6] Morsy M H, Ko Y S, Chung S H et al. Laser-induced two-point ignition of premixture with a single-shot laser[J]. Combustion and Flame, 124, 724-727(2001). http://www.sciencedirect.com/science/article/pii/S0010218000002182

    [7] Myers M J, Myers J D, Guo B P et al. Practical internal combustion engine laser spark plug development[J]. Proceedings of SPIE, 6662, 66620E(2007). http://spie.org/Publications/Proceedings/Paper/10.1117/12.728644

    [8] Phuoc T X. Laser-induced spark ignition fundamental and applications[J]. Optics and Lasers in Engineering, 44, 351-397(2006). http://www.sciencedirect.com/science/article/pii/S0143816605000618

    [9] Yang L, Dong J. Progress in laser ignition based on passively Q-switched solid-state lasers[J]. Laser & Optoelectronics Progress, 52, 030007(2015).

    [10] Geng A C[M]. Solid state laser and applications, 57-67(2014).

    [11] Liedl G, Schuoecker D, Geringer B et al. Laser-induced ignition of gasoline direct-injection engines[J]. Proceedings of SPIE, 5777, 955-961(2005). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=863255

    [12] Gao P, Huang J H, Liu H G et al. Passively Q-switched solid-state Tm∶YAG laser with MoS2 as saturable absorber[J]. Chinese Journal of Lasers, 45, 0701002(2018).

    [13] Kofler H, Tauer J, Tartar G et al. An innovative solid-state laser for engine ignition[J]. Laser Physics Letters, 4, 322-327(2007). http://onlinelibrary.wiley.com/doi/10.1002/lapl.200610106/pdf

    [14] Tsunekane M, Inohara T, Kanehara K et al. Micro-solid-state laser for ignition of automobile engines[M]. ∥Advances in Solid State Lasers Development and Applications. Tokyo: InTech, 195-210(2010).

    [15] Bhandari R, Taira T. >6 MW peak power at 532 nm from passively Q-switched Nd∶YAG/Cr 4+∶YAG microchip laser [J]. Optics Express, 19, 19135-19141(2011).

    [16] Lee K, Lee H C, Cho J Y et al. Passively Q-switched, high peak power Nd∶YAG laser pumped by QCW diode laser[J]. Optics & Laser Technology, 44, 2053-2057(2012).

    [17] Dong J, Wang G Y, Ren Y Y. Advances in passively Q-switched solid-state lasers based on composite materials[J]. Chinese Journal of Lasers, 40, 0601003(2013).

    [18] Li L, Pan X R, Geng Y G. Temperature field of Nd∶YAG microchip heat capacity laser end-pumped by LD[J]. Laser & Optoelectronics Progress, 54, 121404(2017).

    [19] Miao J G, Wang B S, Peng J Y et al. Efficient diode-pumped passively Q-switched laser with Nd∶YAG/Cr∶YAG composite crystal[J]. Optics & Laser Technology, 40, 137-141(2008).

    [20] Wang H X, Yang X Q, Zhao S et al. 2 ns-pulse, compact and reliable microchip lasers by Nd∶YAG/Cr 4+∶YAG composite crystal [J]. Laser Physics, 19, 1824-1827(2009). http://link.springer.com/article/10.1134/S1054660X09150420

    [21] Pavel N, Tsunekane M, Taira T. Composite, all-ceramics, high-peak power Nd∶YAG/Cr 4+∶YAG monolithic micro-laser with multiple-beam output for engine ignition [J]. Optics Express, 19, 9378-9384(2011). http://www.ncbi.nlm.nih.gov/pubmed/21643194

    [22] Lorenz S, Bärwinkel M, Mühlbauer W et al. Pulse train ignition with passively Q-switched laser spark plugs under engine-like conditions. [C]∥Günther M, Sens M. Ignition Systems for Gasoline Engines. Cham: Springer, 254-259(2016).

    [23] Dong J. Numerical modeling of CW-pumped repetitively passively Q-switched Yb∶YAG lasers with Cr∶YAG as saturable absorber[J]. Optics Communications, 226, 337-344(2003).

    [24] Dong J, Lu J R, Ueda K I. Experiments and numerical simulation of a diode-laser-pumped Cr, Nd∶YAG self-Q-switched laser[J]. Journal of the Optical Society of America B, 21, 2130-2136(2004). http://www.opticsinfobase.org/abstract.cfm?uri=josab-21-12-2130

    [25] Zhou B K, Gao Y Z, Chen Z R et al[M]. Laser principles, 226-227(2004).

    Xuheng Gao, Lizhi Wu. Passively Q-Switched Solid State Monolithic Laser Based on Composite Nd∶YAG/Cr∶YAG Crystal[J]. Laser & Optoelectronics Progress, 2019, 56(6): 061401
    Download Citation