• Advanced Photonics
  • Vol. 1, Issue 6, 066003 (2019)
Shimon Rubin* and Yeshaiahu Fainman
Author Affiliations
  • University of California, Department of Electrical and Computer Engineering, San Diego, La Jolla, California, United States
  • show less
    DOI: 10.1117/1.AP.1.6.066003 Cite this Article Set citation alerts
    Shimon Rubin, Yeshaiahu Fainman. Nonlinear, tunable, and active optical metasurface with liquid film[J]. Advanced Photonics, 2019, 1(6): 066003 Copy Citation Text show less
    References

    [1] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 58, 2059-2062(1987).

    [2] S. John. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett., 58, 2486-2489(1987).

    [3] A. Blanco et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature, 405, 437-440(2000).

    [4] K. M. Ho, C. T. Chan, C. M. Soukoulis. Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett., 65, 3152-3155(1990).

    [5] J. B. Pendry et al. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett., 76, 4773-4776(1996).

    [6] E. Yablonovitch et al. Donor and acceptor modes in photonic band structure. Phys. Rev. Lett., 67, 3380-3383(1991).

    [7] O. Painter et al. Two-dimensional photonic band-gap defect mode laser. Science, 284, 1819-1821(1999).

    [8] M. Notomi. Manipulating light with strongly modulated photonic crystals. Rep. Prog. Phys., 73, 096501(2010).

    [9] N. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 13, 139-150(2014).

    [10] A. Arbabi et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 10, 937-943(2015).

    [11] J. S. T. Smalley et al. Luminescent hyperbolic metasurfaces. Nat. Commun., 8, 13793(2017).

    [12] A. I. Kuznetsov et al. Optically resonant dielectric nanostructures. Science, 354, aag2472(2016).

    [13] I. V. Shadrivov, M. Lapine, Y. S. Kivshar. Nonlinear, Tunable and Active Metamaterials(2015).

    [14] S. Longhi. Quantum-optical analogies using photonic structures. Laser Photonics Rev., 3, 243-261(2009).

    [15] A. H. C. Neto et al. The electronic properties of graphene. Rev. Mod. Phys., 81, 109-162(2009).

    [16] S. Raghu, F. D. M. Haldane. Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A, 78, 033834(2008).

    [17] R. A. Sepkhanov, Y. B. Bazaliy, C. W. Beenakker. Extremal transmission at the Dirac point of a photonic band structure. Phys. Rev. A, 75, 063813(2007).

    [18] O. Bahat-Treidel et al. Klein tunneling in deformed honeycomb lattices. Phys. Rev. Lett., 104, 063901(2010).

    [19] O. Bahat-Treidel, O. Peleg, M. Segev. Symmetry breaking in honeycomb photonic lattices. Opt. Lett., 33, 2251-2253(2008).

    [20] O. Peleg et al. Conical diffraction and gap solitons in honeycomb photonic lattices. Phys. Rev. Lett., 98, 103901(2007).

    [21] M. J. Ablowitz, S. D. Nixon, Y. Zhu. Conical diffraction in honeycomb lattices. Phys. Rev. A, 79, 053830(2009).

    [22] H. Kogelnik, C. V. Shank. Stimulated emission in a periodic structure. Appl. Phys. Lett., 18, 152-154(1971).

    [23] C. V. Shank, J. E. Bjorkholm, H. Kogelnik. Tunable distributed-feedback dye laser. Appl. Phys. Lett., 18, 395-396(1971).

    [24] M. Meier et al. Laser action from two-dimensional distributed feedback in photonic crystals. Appl. Phys. Lett., 74, 7-9(1999).

    [25] W. Zhou et al. Lasing action in strongly coupled plasmonic nanocavity arrays. Nat. Nanotechnol., 8, 506-511(2013).

    [26] M. Karl et al. Flexible and ultra-lightweight polymer membrane lasers. Nat. Commun., 9, 1525(2018).

    [27] L. Ju et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol., 6, 630-634(2011).

    [28] S. Xiao et al. Tunable magnetic response of metamaterials. Appl. Phys. Lett., 95, 033115(2009).

    [29] Z. Li et al. Mechanically tunable optofluidic distributed feedback dye laser. Opt. Express, 14, 10494-10499(2006).

    [30] D. Psaltis, S. R. Quake, C. Yang. Developing optofluidic technology through the fusion of microfluidics and optics. Nature, 442, 381-386(2006).

    [31] K. Busch, S. John. Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum. Phys. Rev. Lett., 83, 967-970(1999).

    [32] A. Bakal et al. Tunable on chip optofluidic laser. Appl. Phys. Lett., 107, 211105(2015).

    [33] V. N. Smolyaninova et al. Self-assembled tunable photonic hyper-crystals. Sci. Rep., 4, 5706(2015).

    [34] M. Gersborg-Hansen, A. Kristensen. Tunability of optofluidic distributed feedback dye lasers. Opt. Express, 15, 137-142(2007).

    [35] F. B. Arango et al. Optofluidic tuning of photonic crystal band edge lasers. Appl. Phys. Lett., 91, 223503(2007).

    [36] S. Rubin, Y. Fainman. Nonlocal and nonlinear surface plasmon polaritons and optical spatial solitons induced by the thermocapillary effect. Phys. Rev. Lett., 120, 243904(2018).

    [37] S. Rubin, B. Hong, Y. Fainman. Subnanometer imaging and controlled dynamical patterning of thermocapillary driven deformation of thin liquid films. Light Sci. Appl., 8, 1-11(2019).

    [38] V. G. Levich. Physicochemical Hydrodynamics(1962).

    [39] H. M. J. M. Wedershoven et al. Infrared laser induced rupture of thin liquid films on stationary substrates. Appl. Phys. Lett., 104, 054101(2014).

    [40] J. Muller, H. M. J. M. Wedershoven, A. A. Darhuber. Monitoring photochemical reactions using Marangoni flows. Langmuir, 33, 3647-3658(2017).

    [41] H. Raether. Surface Plasmons on Smooth and Rough Surfaces and on Gratings(2013).

    [42] T. Tamir, H. Kogelnik. Theory of optical waveguides. Guided-Wave Optoelectronics, 26, 13-81(1975).

    [43] V. V. Yaminsky et al. Stability of aqueous films between bubbles. Part 1. The effect of speed on bubble coalescence in purified water and simple electrolyte solutions. Langmuir, 26, 8061-8074(2010).

    [44] A. Patsyk et al. Observation of branched flow of light(2019).

    [45] Y. Lamhot et al. Optical control of thermocapillary effects in complex nanofluids. Phys. Rev. Lett., 103, 264503(2009).

    [46] J. Happel, H. Brenner. Low Reynolds Number Hydrodynamics, 431-441(1983).

    [47] I. S. Aranson, L. Kramer. The world of the complex Ginzburg–Landau equation. Rev. Mod. Phys., 74, 99-143(2002).

    [48] A. Marini, D. V. Skryabin. Ginzburg–Landau equation bound to the metal–dielectric interface and transverse nonlinear optics with amplified plasmon polaritons. Phys. Rev. A, 81, 033850(2010).

    [49] A. Davoyan et al. Nonlinear nanofocusing in tapered plasmonic waveguides. Phys. Rev. Lett., 105, 116804(2010).

    [50] H. J. Eichler et al. Laser-Induced Dynamic Gratings, 50(2013).

    [51] P. R. Wallace. The band theory of graphite. Phys. Rev., 71, 622-634(1947).

    [52] G. Lifante. Integrated Photonics: Fundamentals(2003).

    [53] T. Suhara. Semiconductor Laser Fundamentals(2004).

    [54] H. Kogelnik, C. V. Shank. Coupled-wave theory of distributed feedback lasers. J. Appl. Phys., 43, 2327-2335(1972).

    [55] A. Yariv, P. Yeh. Photonics: Optical Electronics in Modern Communications(2006).

    [56] J. M. Liu. Photonic Devices(2009).

    [57] M. J. Ablowitz, Y. Zhu. Evolution of Bloch-mode envelopes in two-dimensional generalized honeycomb lattices. Phys. Rev. A, 82, 013840(2010).

    [58] M. J. Ablowitz, Y. Zhu. Nonlinear wave packets in deformed honeycomb lattices. SIAM J. Appl. Math., 73, 1959-1979(2013).

    [59] M. I. Shalaev et al. Reconfigurable topological photonic crystal. New J. Phys., 20, 023040(2018).

    [60] K. E. Oughstun, N. A. Cartwright. On the Lorentz–Lorenz formula and the Lorentz model of dielectric dispersion. Opt. Express, 11, 1541-1546(2003).

    [61] S.-L. Zhu, B. Wang, L.-M. Duan. Simulation and detection of Dirac fermions with cold atoms in an optical lattice. Phys. Rev. Lett., 98, 260402(2007).

    [62] L. Tarruell et al. Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice. Nature, 483, 302-305(2012).

    [63] N. M. Estakhri, B. Edwards, N. Engheta. Inverse-designed metastructures that solve equations. Science, 363, 1333-1338(2019).

    [64] A. Oron, S. H. Davis, S. G. Bankoff. Long-scale evolution of thin liquid films. Rev. Mod. Phys., 69, 931-980(1997).

    [65] S. Hassani. Mathematical Physics: A Modern Introduction to Its Foundations(2013).

    CLP Journals

    [1] Hui Yang, Zhenwei Xie, Guanhai Li, Kai Ou, Feilong Yu, Hairong He, Hong Wang, Xiaocong Yuan. All-dielectric metasurface for fully resolving arbitrary beams on a higher-order Poincaré sphere[J]. Photonics Research, 2021, 9(3): 331

    [2] Shijia Hua, Kang Du, Heng Wang, Wending Zhang, Ting Mei, Elhadj Dogheche. Affirming nonlinear optical coefficient constancy from z-scan measurement[J]. Chinese Optics Letters, 2020, 18(7): 071903

    Shimon Rubin, Yeshaiahu Fainman. Nonlinear, tunable, and active optical metasurface with liquid film[J]. Advanced Photonics, 2019, 1(6): 066003
    Download Citation