• Acta Geographica Sinica
  • Vol. 75, Issue 5, 931 (2020)
Yili ZHANG1、1、2、2、3、3、*, Xue WU1、1、3、3, and Du ZHENG1、1
Author Affiliations
  • 1.Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
  • 1.中国科学院地理科学与资源研究所 中国科学院陆地表层格局与模拟重点实验室,北京 100101
  • 2.CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
  • 2.中国科学院青藏高原地球科学卓越创新中心,北京 100101
  • 3.University of Chinese Academy of Sciences, Beijing 100049, China
  • 3.中国科学院大学,北京 100049
  • show less
    DOI: 10.11821/dlxb202005004 Cite this Article
    Yili ZHANG, Xue WU, Du ZHENG. Vertical variation of land cover in the Central Himalayas[J]. Acta Geographica Sinica, 2020, 75(5): 931 Copy Citation Text show less
    References

    [1] Haberl H, Erb K H, Krausmann F et al. Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems[C]. Proceedings of the National Academy of Sciences of the United States of America, 104, 12942-12945(2007).

    [2] Pitman A, Avila F, Abramowitz G et al. Importance of background climate in determining impact of land-cover change on regional climate[J]. Nature Climate Change, 1, 472-475(2011).

    [3] He F, Vavrus S, Kutzbach J et al. Simulating global and local surface temperature changes due to Holocene anthropogenic land cover change[J]. Geophysical Research Letters, 41, 623-631(2014).

    [4] Mooney H, Duraiappah A, Larigauderie A. Evolution of natural and social science interactions in global change research programs[C]. Proceedings of the National Academy of Sciences of the United States of America, 110, 3665-3672(2013).

    [5] Walter H. Vegetation of the earth in relation to climate and the eco-physiological conditions. London: The English Universities press[J]. Ltd.(1973).

    [6] Dullinger S. Modelling climate change-driven treeline shifts: Relative effects of temperature increase, dispersal and invisibility[J]. Journal of Ecology, 92, 241-252(2004).

    [7] Allan N J R. Accessibility and altitudinal zonation models of mountains[J]. Mountain Research & Development, 6, 185-194(1986).

    [8] Callaway R M. Positive interactions in plant communities and the individualistic-continuum concept[J]. Oecologia, 112, 143-149(1997).

    [9] Grabherr G, Gottfried M, Paull H. Climate effects on mountain plants[J]. Nature, 369, 448(1994).

    [11] Beniston M. Climatic change in mountain regions: A review of possible impacts[J]. Climatic Change, 59, 5-31(2003).

    [12] Gian-Reto W, Eric P, Peter C et al. Ecological responses to recent climate change[J]. Nature, 416, 389-395(2002).

    [13] Liang E, Wang Y, Piao S et al. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau[C]. Proceedings of the National Academy of Sciences of the United States of America, 113, 4380-4385(2016).

    [16] Li X X, Liang E Y, Gricar J et al. Critical minimum temperature limits xylogenesis and maintains treelines on the southeastern Tibetan Plateau[J]. Science Bulletin, 62, 804-812(2017).

    [17] Liang E Y, Wang Y F, Piao S L et al. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau[C]. Proceedings of the National Academy of Sciences of the United States of America, 113, 4380-4385(2016).

    [19] Zhang Y L, Gao J G, Liu L S et al. NDVI-based vegetation changes and their response to climate change from 1982 to 2011: A case study in the Koshi River Basin in the middle Himalayans[J]. Global and Planetary Change, 108, 139-148(2013).

    [20] Wu X, Gao J G, Zhang Y L et al. Land cover status in the Koshi River Basin, Central Himalayas,[J]. Journal of Resources and Ecology, 8, 10-19(2017).

    Yili ZHANG, Xue WU, Du ZHENG. Vertical variation of land cover in the Central Himalayas[J]. Acta Geographica Sinica, 2020, 75(5): 931
    Download Citation