• Acta Optica Sinica
  • Vol. 37, Issue 5, 505001 (2017)
Zhang Heng1、2, Li Sikun1、2, and Wang Xiangzhao1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201737.0505001 Cite this Article Set citation alerts
    Zhang Heng, Li Sikun, Wang Xiangzhao. Fast Simulation Method of Extreme-Ultraviolet Lithography 3D Mask Based on Variable Separation Degration Method[J]. Acta Optica Sinica, 2017, 37(5): 505001 Copy Citation Text show less
    References

    [1] Wu B, Kumar A. Extreme ultraviolet lithography: a review[J]. Journal of Vacuum Science & Technology B, 2007, 25(6): 1743-1761.

    [2] Pirati A, Peeters R, Smith D, et al. Performance overview and outlook of EUV lithography systems[C]. SPIE, 2015, 9422: 94221P.

    [3] Turkot B, Carson S L, Lio A, et al. EUV progress toward HVM readiness[C]. SPIE, 2016, 9776: 977602.

    [4] Erdmann A, Fühner T, Evanschitzky P, et al. Optical and EUV projection lithography: a computational view[J]. Microelectronic Engineering, 2015, 132: 21-34.

    [5] Mack C, Jones R, Byers J. Computer-implemented method and carrier medium configured to generate a set of process parameters for a lithography process: US, 6968253[P]. 2005-11-22.

    [6] Cao Y, Wang X, Tu Y, et al. Impact of mask absorber thickness on the focus shift effect in extreme ultraviolet lithography[J]. Journal of Vacuum Science & Technology B, 2012, 30(3): 031602.

    [7] Erdmann A, Evanschitzky P, Shao F, et al. Predictive modeling of EUV-lithography: the role of mask, optics, and photoresist effects[C]. SPIE, 2011, 8171: 81710M.

    [8] Viala A, Erdmanna A, Schmoellerb T, et al. Modification of boundaries conditions in the FDTD algorithm for EUV masks modeling[C]. SPIE, 2002, 4754: 890-899.

    [9] Schiavone P, Granet G, Robic J Y. Rigorous electromagnetic simulation of EUV masks: influence of the absorber properties[J]. Microelectronic Engineering, 2001, 57(3): 497-503.

    [10] Zhu Z, Lucas K, Cobb J L, et al. Rigorous EUV mask simulator using 2D and 3D waveguide methods[C]. SPIE, 2003, 5037: 494-503.

    [11] Evanschitzky P, Erdmann A. Three dimensional EUV simulations - a new mask near field and imaging simulation system[C]. SPIE, 2005, 5992: 59925B.

    [12] Cao Yuting, Wang Xiangzhao, Bu Yang. Fast simulation model for contact hole mask in extreme-ultraviolet lithography[J]. Acta Optica Sinica, 2012, 32(7): 0705001.

    [13] Lam M C, Neureuther A R. Simplified model for absorber feature transmissions on EUV masks[C]. SPIE, 2006, 6349: 63492H.

    [14] Tirapu-Azpiroz J, Burchard P, Yablonovitch E. Boundary layer model to account for thick mask effects in photolithography[C]. SPIE, 2003, 5040: 1611-1619.

    [15] Gullikson E M, Cerjan C, Stearns D G, et al. Practical approach for modeling extreme ultraviolet lithography mask defects[J]. Journal of Vacuum Science & Technology B, 2002, 20(1): 81-86.

    [16] Clifford C H, Neureuthe A R. Smoothing based model for images of isolated buried EUV multilayer defects[C]. SPIE, 2008, 6921: 692119.

    [17] Clifford C H, Neureuther A R. Fast simulation methods and modeling for extreme ultraviolet masks with buried defects[J]. Journal of Micro/Nanolithography Mems & Moems, 2009, 8(3): 031402.

    [18] Lam M C, Neureuther A R. Fast simulation methods for defective EUV mask blank inspection[C]. SPIE, 2004, 5567: 741-750.

    [19] Evanschitzky P, Erdmann A, Besacier M, et al. Simulation of extreme ultraviolet masks with defective multilayers[C]. SPIE, 2003, 5130: 1035-1045.

    [20] Liu Xiaolei, Li Sikun, Wang Xiangzhao. Simulation model based on equivalent layer method for defective mask multilayer in extreme ultra violet lithography[J]. Acta Optica Sinica, 2015, 35(6): 0622005.

    [21] Adam K. Domain decomposition methods for the electromagnetic simulation of scattering from three-dimensional structures with applications in lithography[D]. Berkeley: University of California, 2001.

    [22] Erdmann A, Kalus C K, Schmoeller T, et al. Efficient simulation of light diffraction from 3-dimensional EUV-masks using field decomposition techniques[C]. SPIE, 2003, 5037: 482-493.

    [23] Mailfert J, Zuniga C, Philipsen V, et al. 3D mask modeling for EUV lithography[C]. SPIE, 2012, 8322: 832224.

    [24] Evanschitzky P, Erdmann A. Fast near field simulation of optical and EUV masks using the waveguide method[C]. SPIE, 2007, 6533: 65330Y.

    [25] Wang Shifan. Theory and application of information optics[M]. Beijing: BUPT Press, 2003: 31-32.

    [26] Lucas K, Tanabe H, Strojwas J. Efficient and rigorous three-dimensional model for optical lithography simulation[J]. Journal of the Optical Society of America A, 1996, 13(11): 2187-2199.

    [27] Zhou Xinjiang. Theory and method for fast simulation of optical image in lithography based on the method of separation of variables[D]. Wuhan: Huazhong University of Science and Technology, 2015: 40-43.

    [28] Fühner T, Schnattinger T, Ardelean G. Dr. LiTHO-a development and research lithography simulator[C]. SPIE, 2007, 6520: 65203F.

    Zhang Heng, Li Sikun, Wang Xiangzhao. Fast Simulation Method of Extreme-Ultraviolet Lithography 3D Mask Based on Variable Separation Degration Method[J]. Acta Optica Sinica, 2017, 37(5): 505001
    Download Citation