• Chinese Journal of Quantum Electronics
  • Vol. 18, Issue 5, 385 (2001)
[in Chinese], [in Chinese], [in Chinese], and [in Chinese]
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Review and Possibility of a Chemical Iodine Laser Pumped by NCl(a1△)[J]. Chinese Journal of Quantum Electronics, 2001, 18(5): 385 Copy Citation Text show less
    References

    [1] McDermott W E, Pchelkin N R, Bernard D J et al. An electronic transition chemical laser [J]. Appl. Phys. Lett.,1978, 32:469

    [2] Megawatt Laser, http://www.airforce-technology.com/

    [3] Yang T T, Bower R D. I(2P1/2) produced from the energy transfer from NCl(a1△) to I(2P3/2) [J]. SPIE Proceeding,1990, 225

    [4] Han P. Bartels D M. J. Phys. Chem., 1990, 94:5824

    [5] Han P, Bartels D M. Chem. Phys. Lett., 1989, 159:538

    [6] Han P, Bartels DM. J. Phys. Chem., 1990, 94:7294

    [7] Hart E J, Gordon S, Fielden E M. J. Phys. Chem., 1966, 70:770

    [8] Fielden E M, Hart E J. Trans. Faraday Soc., 1967, 63: 2975;1968, 64:3158

    [9] Hart E J, Anbar M. The Hydrated Electron [M]. New York: Wiley-Interscience, 1970.

    [10] Hart E J, Anbar M. The Hydrated Electron [M]. New York: Wiley-lnterscience, 1970. 97

    [11] Math~on M S, Dorfman L M. Pulse Radiolysis [M]. Cambridge, MA: MIT press, 1969.

    [12] Dorfman L M, Sauer M C. In Investigation of Rates and Mechanisms of Reactions [M]. Bernasconi C F, Ed., NewYork: Wiley-Interscience, 1986. Part Ⅱ, Chapter ⅨX

    [13] Schwarz H A. J. Phys. Chem., 1991, 95:6697

    [14] Yamsaki K, Fueno T. Study on the reaction N+N3 → N2(B)+N2(X) [J]. Chem. Phys. Lett., 1983, 94:425

    [15] Buxton G V. Pulse Radiolysis [M]. Tabata Y, Ed., Boca Raton, FL: CRC Press: 1991. Chapter 17

    [16] Heidner R F Ⅲ, Helvajian H, Koffend J B. J. Phys. Chem., 1989, 93:7818

    [17] Cha H, Setser D W. J. Phys. Chem., 1989, 93:235

    [18] Habdas J, Setser D W. J. Phys. Chem., 1989, 93:229

    [19] Du K, Setser D W. J. Phys. Chem., 1991, 95:9352

    [20] Capelle G A, Sutton D G, Steinfeld J I. J. Chem. Phys., 1978, 69:5140

    [21] Herbelin J M, Klingberg R A. Int. J. Chem. Kinet., 1984, 16:849

    [22] Winker B K, Benard D J. J. Appl. Phys., 1991, 69:2805

    [23] Winker B K, Benard D J, Sedar T A. High Power Gas Lasers, Proc. SPIE, 1990, 1225:543

    [24] Clyne M A A, MacRobert A J, Brunning J et al. J. Chem. Soc. Faraday Trans. 2, 1983, 79:1515

    [25] Benard D J, Chowdhury M A, Winkler B K et al. J. Phys. Chem., 1990, 94:7507

    [26] Ray A J, Coombe R D. J. Phys. Chem., 1993, 97:3475

    [27] Coombe R D, Patel D, Pritt A T et al. J. Chem. Phys., 1981, 75:2177

    [28] Pritt A T, Coombe R D. Intern. J. Chem. Kinetics, 1980, 12:741

    [29] Clyne M A A, MacRobert. J. Chem. Soc. Faraday Trans. 2, 1983, 79:283

    [30] Exton D B, Gilbert J V, Coombe R D. J. Phys. Chem., 1991, 95:2692

    [31] Exton D B, Gilbert J V, Coombe R D. J. Phys. Chem., 1991, 95:7758

    [32] Ray A T, Coombe R D. J. Phys. Chem., 1993, 97(14): 3475~3479

    [33] Ray A T, Coombe R D. J. Phys. Chem., 1994, 98(36): 8940~8945

    [34] Ray A T, Coombe R D. J. Phys Chem., 1995, 99(20): 7849~7852

    [35] Henshaw T L, Madden T J, Herbelin J M et al. Measurement of gain on the 1.315 μm transition of atomic iodine produced from the NCl(a)+I energy transfer reaction [J]. Photonics West'99 Proc. SPIE, 3612, 147~156

    [36] Mankell G C, Henshaw T L, Madden T J et al. Temperature dependence of the Cl+HN3 reaction from 300 to 480 K [J]. Photonics West'2000 Proc. SPIE, 2000, 3931A-12

    [37] Komissarov A V, MankeII G C, Heaven M C. Kinetic spectroscopy of NCl [J]. Photonics West'2000 Proc. SPIE,2000, 3931A-22

    [38] MankelI G C, Setser D W. Measuring gas-phase chlorine atom concentrations: rate constants for Cl+HN3, CF3land C2F5I [J]. J. Phys. Chem. A, 1998,102:153

    [39] Henshaw T L, Herrera S D, Schlie L A. Temperature dependence of the NCl(a)+I(2P3/2) reaction from 300 to 482 K [J]. J. Phys. Chem. A, 1998, 102:6239

    [40] MankeII G C, Setser D W. Kinetics of NCl(a and b) generation: the Cl+N3 rate constant, the NCl(a) product branching fraction, and quenching of NCl(a) by F and Cl atoms [J]. J. Phys. Chem. A, 1998, 102:7257

    [41] Henshaw T L, Herrera S D, Haggquist G W et al. Kinetics of NCl(a) via photodissociation of ClN3 [J]. J. Phys.Chem. A, 1997, 101:4048

    [42] Hewett K J, Manke H G C, Setser D W et al. Quenching rate constants of NCl(a) at room temperature [J]. J.Phys. Chem. A, 2000, 104(3): 539

    [43] Piper L G, Krech R H, Taylor R L. Generation of N3 in the thermal decomposition of NaN3 [J]. J. Chem. Phys.,1979, 71(5): 2099

    [44] Arnold S J, Foster K D, Snelling D R. Performance and diagnostic measurements of a supersonic HCl [J]. J. Appl. Phys., 1979, 50(3): 1189

    [46] Liu X, MacDonald M A, Coombe R D. J. Phys. Chem., 1992, 96(12): 4907

    [47] Perram G P, Hager G D. The standard chemical oxygen-iodine laser kinetics package. AD-A208643, 1988

    CLP Journals

    [1] Li Liucheng, Duo Liping, Yang Bailing. Chemical Kinetics Simulation for H+NCl3+HI Chemical Laser System[J]. Chinese Journal of Lasers, 2009, 36(2): 367

    [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Review and Possibility of a Chemical Iodine Laser Pumped by NCl(a1△)[J]. Chinese Journal of Quantum Electronics, 2001, 18(5): 385
    Download Citation