• Journal of Advanced Dielectrics
  • Vol. 12, Issue 6, 2241005 (2022)
Mengjia Fan*, Xinyu Bu*, Wenxuan Wang*, Wei Sun*, Xiujuan Lin*, Shifeng Huang*, and Changhong Yang*
Author Affiliations
  • Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, P. R. China
  • show less
    DOI: 10.1142/S2010135X22410053 Cite this Article
    Mengjia Fan, Xinyu Bu, Wenxuan Wang, Wei Sun, Xiujuan Lin, Shifeng Huang, Changhong Yang. Stable self-polarization in lead-free Bi(Fe0.93Mn0.05Ti0.02)O3 thick films[J]. Journal of Advanced Dielectrics, 2022, 12(6): 2241005 Copy Citation Text show less
    References

    [1] S. H. Baek, J. Park, D. M. Kim, V. A. Aksyuk, R. R. Das, S. D. Bu, D. A. Felker, J. Lettieri, V. Vaithyanathan, S. S. N. Bharadwaja, N. Bassiri-Gharb, Y. B. Chen, H. P. Sun, C. M. Folkman, H. W. Jang, D. J. Kreft, S. K. Streiffer, R. Ramesh, X. Q. Pan, S. Trolier-McKinstry, D. G. Schlom, M. S. Rzchowski, R. H. Blick, C. B. Eom. Giant piezoelectricity on Si for hyperactive MEMS. Science, 18, 958(2011).

    [2] C. B. Eom, S. T. McKinstry. Thin-film piezoelectric MEMS. MRS. Bull., 37, 1007(2012).

    [3] J. Jung, W. Lee, W. Kang, E. Shin, J. Ryu, H. Choi. Review of piezoelectric micromachined ultrasonic transducers and their applications. J. Micromech. Microeng., 27, 113001(2017).

    [4] I. Kanno. Piezoelectric MEMS: Ferroelectric thin films for MEMS applications. Jpn. J. Appl. Phys., 57, 040101(2018).

    [5] J. Y. Zhao, G. Niu, W. Ren, L. Y. Wang, G. H. Dong, N. Zhang, M. Liu, Z. G. Ye. Self-polarization in epitaxial fully matched lead-free bismuth sodium titanate based ferroelectric thin films. ACS Appl. Mater. Interfaces, 10, 23945(2018).

    [6] Z. Wang, J. Y. Zhao, G. Niu, W. Ren, N. Zhang, K. Zheng, Y. Quan, L. Y. Wang, J. Zhuang, H. H. Cai, X. Li, G. S. Wang, M. Liu, Z. D. Jiang, Y. L. Zhao. Giant strain responses and relaxor characteristics in lead-free (Bi0. 5Na0. 5)TiO3-BaZrO3 ferroelectric thin films. J. Mater. Chem. C, 10, 7449(2022).

    [7] Y. Huang, L. Shu, F. D. Hu, L. S. Liu, Z. Zhou, Y. Y. S. Cheng, S. W. Zhang, W. Li, Q. Li, H. L. Wang, Z. N. Dong, L. Y. Wei, C. Luo, J. F Li. Implementing (K,Na)NbO3-based lead-free ferroelectric films to piezoelectric micromachined ultrasonic transducers. Nano Energy, 103, 107761(2022).

    [8] Y. Y. S. Cheng, L. S. Liu, Y. Huang, L. Shu, Y. X. Liu, L. Y. Wei, J. F. Li. All-inorganic flexible (K,Na)NbO3 based lead-free piezoelectric thin films spin-coated on metallic foils. ACS Appl. Mater. Interfaces, 13, 39633(2021).

    [9] M. Aramaki, T. Yoshimura, S. Murakami, K. Satoh, N. Fujimura. Demonstration of high-performance piezoelectric MEMS vibration energy harvester using BiFeO3 film with improved electromechanical coupling factor. Sens. Actuat. A-Phys., 291, 167(2019).

    [10] M. M. Niu, H. F. Zhu, Y. Y. Wang, J. Yan, N. Chen, P. Yan, J. Ouyang. Integration-friendly, chemically stoichiometric BiFeO3 films with a piezoelectric performance challenging that of PZT. ACS Appl. Mater. Interfaces, 12, 33899(2020).

    [11] B. Belgacem, F. Calame, P. Muralt. Piezoelectric micromachined ultrasonic transducers with thick PZT sol gel films. J. Electroceram., 19, 369(2007).

    [12] S. S Won, J. Lee, V. Venugopal, D. J. Kim, J. Lee, I. W. Kim, A. I. Kingon, S. H. Kim. Lead-free Mn-doped (K 0. 5, Na0. 5)NbO3 piezoelectric thin films for MEMS-based vibrational energy harvester applications. Appl. Phys. Lett., 108, 232908(2016).

    [13] D. Shen, J. H. Park, J. H. Noh, S. Y. Choe, S. H. Kim, H. C. Wikle III, D. J. Kim. Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting. Sens. Actuat. A Phys., 154, 103(2009).

    [14] A. V. Semchenko, V. V Sidsky, I. Bdikin, V. E. Gaishun, S. Kopyl, D. L. Kovalenko, O. Pakhomov, S. A. Khakhomov, A. L. Kholkin. Nanoscale piezoelectric properties and phase separation in pure and La-doped BiFeO3 films prepared by sol-gel method. Materials, 14, 1694(2021).

    [15] H. W. Chang, F. T. Yuan, Y. C. Yu, P. C. Chen, C. R. Wang, C. S. Tu, S. U. Jen. Photovoltaic property of sputtered BiFeO3thin films. J. Alloy. Compd., 574, 402(2013).

    [16] Y. J. Zhang, H. W. Zheng, X. W. Wang, H. Li, Y. H. Wu, Y. Z. Zhang, H. X. Su, G. L. Yuan. Enhanced photovoltaic properties of gradient calcium-doped BiFeO3 films. Ceram. Int., 46, 10083(2020).

    [17] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, R. Ramesh. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science, 299, 1719(2003).

    [18] J. C. Yang, Q. He, P. Yu, Y. H. Chu. BiFeO3 thin films: A playground for exploring electric-field control of multifunctionalities. Annu. Rev. Mater. Res., 45, 249(2015).

    [19] G. Catalan, J. F. Scott. Physics and applications of bismuth ferrite. Adv. Mater., 21, 2463(2009).

    [20] J. G. Wu, J. Wang. BiFeO3 thin films of (111)-orientation deposited on SrRuO3 buffered Pt/TiO2/SiO2/Si (100) substrates. Acta. Mater., 58, 1688(2010).

    [21] G. D. Hu, S. H. Fan, C. H. Yang, W. B. Wu. Low leakage current and enhanced ferroelectric properties of Ti and Zn codoped BiFeO3thin film. Appl. Phys. Lett., 92, 192905(2008).

    [22] R. Thomas, J. F. Scott, D. N. Bose, R. S. Katiyar. Multiferroic thin-film integration onto semiconductor devices. J. Phys. Condens. Mat., 22, 423201(2010).

    [23] C. H. Yang, Y. J. Han, J. Qian, P. P. Lv, X. J. Lin, S. F. Huang, Z. X. Cheng. Flexible, temperature-resistant, and fatigue-free ferroelectric memory based on Bi(Fe0. 93Mn0. 05Ti0. 02)O3 thin film. ACS Appl. Mater. Interfaces, 11, 12647(2019).

    [24] Y. J. Han, J. Qian, J. R. Wang, X. J. Lin, C. H. Yang, S. F. Huang. Structure and ferroelectric properties of BiFeO3 nano-crystalline film substituted at A/B Site. J. Chin. Ceram. Soc., 49, 511(2021).

    [25] J. Yan, H. F. Zhu, J. Ouyang, I. Kanno, P. Yan, Y. Y. Wang, K. Onishi, T. Nishikado. Highly (00l)-textured BiFeO3 thick films integrated on stainless steel foils with an optimized piezoelectric performance. J. Eur. Ceram. Soc., 42, 3454(2022).

    [26] H. Pan, Y. Zeng, Y. Shen, Y. H. Lin, J. Ma, L. L Li, C. W. Nan. BiFeO3-SrTiO3 thin film as a new lead-free relaxor-ferroelectric capacitor with ultrahigh energy storage performance. J. Mater. Chem. A, 5, 5920(2017).

    [27] C. H. Yang, P. P. Lv, J. Qian, Y. J. Han, J. Ouyang, X. J. Lin, S. F. Huang, Z. X. Cheng. Fatigue-free and bending-endurable flexible Mn-doped Na0. 5Bi0. 5 TiO3-BaTiO3-BiFeO3 film capacitor with an ultrahigh energy storage performance. Adv. Energy Mater., 9, 1803949(2019).

    [28] N. Zhang, D. Chen, F. Niu, S. Wang, L. S. Qin, Y. X. Huang. Enhanced visible light photocatalytic activity of Gd doped BiFeO3 nanoparticles and mechanism insight. Sci. Rep., 6, 26467(2016).

    [29] X. B. Xie, S. J. Yang, F. Q. Zhang, S. H. Fan, Q. D. Che, C. J. Wang, X. D. Guo, L. P. Zhang. Effects of excess Bi on structure and electrical properties of BiFeO3 thin films deposited on indium tin oxide substrate using sol-gel method. J. Mater. Sci-Mater. Electron., 26, 10095(2015).

    [30] S. J. Guo, C. H. Yang, X. M. Jiang, P. P. Lv, G. D. Hu. High ferroelectric performance of Bi0. 9La0. 1 FeO3 thick film by optimizing preparation precursor solution. J. Sol-Gel. Sci. Technol., 80, 174(2016).

    [31] G. D. Hu, X. Cheng, W. B. Wu, C. H. Yang. Effects of Gd substitution on structure and ferroelectric properties of BiFeO3 thin films prepared using metal organic decomposition. Appl. Phys. Lett., 91, 232909(2007).

    [32] P. P. Lv, C. H. Yang, F. J. Geng, C. Feng, X. M. Jiang, G. D. Hu. Microstructure, ferroelectric and dielectric properties in Nd and Ti co-doped BiFeO3 thin film. J. Sol-Gel. Sci. Technol., 78, 559(2016).

    [33] L. X. Chen, C. Xu, X. L. Fan, X. H. Cao, K. Ji, C. H. Yang. Study on leakage current, ferroelectric and dielectric properties of BFMO thin films with different bismuth contents. J. Mater. Sci.Mater. Electron., 30, 7704(2019).

    [34] Z. Y. Zhong, H. Ishiwara. Variation of leakage current mechanisms by ion substitution in BiFeO3thin films. Appl. Phys. Lett., 95, 112902(2009).

    [35] P. P. Lv, X. M. Jiang, J. Yan, G. D. Hu. Stable self-polarization in Nd and Ti codoped BiFeO3 films. J. Mater. Sci-Mater. Electron., 28, 2233(2017).

    [36] Y. Q. Guo, P. Xiao, R. Wen, Y. Wan, Q. J. Zheng, D. L. Shi, K. H. Lam, M. L. Liu, D. Lin. Critical roles of Mn-ions in enhancing theinsulation, piezoelectricity and multiferroicity of BiFeO3-based lead-free high temperature ceramics. J. Mater. Chem. C, 3, 5811(2015).

    [37] B. Bharti, S. Kumar, H. N. Lee, R. Kumar. Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci. Rep., 6, 32355(2016).

    [38] N. N. Rong, M. S. Chu, Y. L. Tang, C. Zhang, X. Cui, H. C. He, Y. H. Zhang, P. Xiao. Improved photoelectrocatalytic properties of Ti-doped BiFeO3 films for water oxidation. J. Mater. Sci., 51, 5712(2016).

    [39] J. Lee, R. Ramesh, V. G. Keramidas, W. L. Warren, G. E. Pike, J. T. Jr. Evans. Imprint and oxygen deficiency in (Pb,La)(Zr,Ti)O3 thin film capacitors with LaSrCoO electrodes. Appl. Phys. Lett., 66, 1337(1995).

    [40] J. G. Chen, G. X. Jin, C. M. Wang, J. R. Cheng. Reduced dielectric loss and strain hysteresis in Fe and Mn comodified high-temperature BiScO3–PbTiO3 ceramics. J. Am. Ceram. Soc., 97, 3890(2014).

    [41] B. C. Jeon, D. Lee, M. H. Lee, S. M. Yang, S. C. Chae, T. K. Song, S. D. Bu, J. S. Chung, J. G. Yoon, T. W. Noh. Flexoelectric effect in the reversal of self-polarization and associated changes in the electronic functional properties of BiFeO3 thin films. Adv. Mater., 25, 5643(2013).

    [42] Y. Liu, Y. J. Qi, P. Zhou, C. X. Guan, H. Chen, J. Z. Wang, Z. J. Ma, T. J. Zhang, Y. Liu. Mechanisms of resistive switching in BiFeO3 thin films modulated by bottom electrode. J. Phys. D. Appl. Phys., 51, 025303(2018).

    [43] Y. F. Hou, T. D. Zhang, W. L. Li, W. P. Cao, Y. Yu, D. Xu, W. Wang, X. L. Liu, W. D. Fei. Self-polarization induced by lattice mismatch and defect dipole alignment in (001) BaTiO3/LaNiO3 polycrystalline film prepared by magnetron sputtering at low temperature. RSC Adv., 5, 61821(2015).

    [44] A. Z. Simões, M. A. Ramírez, C. S. Riccardi, E. Longo, J. A. Varela. Effect of oxidizing atmosphere on the electrical properties of SrBi4Ti4O15 thin films obtained by the polymeric precursor method. Solid. State. Sci., 10, 1951(2008).

    [45] C. Gao, J. Yang, X. J. Meng, T. Lin, J. H. Ma, J. L. Sun, J. H. Chu. Aging-induced abnormality of dielectric response under dc bias in Ba(Zr,Ti)O3 thin films. Appl. Phys. A, 104, 123(2011).

    [46] C. H. Yang, J. Qian, Y. J. Han, J. H. Song, Q. Yao, L. X. Chen, Z. Y. Sun. The microstructure, ferroelectric and dielectric properties of Ni-doped Na0. 5Bi0. 5TiO3 nanocrystalline films: A-site nonstoichiometry study. Ceram. Int., 44, 5807(2018).

    [47] J. G. Wu, D. Q. Xiao, Y. Y. Wang, J. G. Zhu, J. L. Zhu, R. S. Xie. High tunability of highly (100)-oriented lead zirconate titanium thin films. J. Am. Ceram. Soc., 91, 3786(2008).

    Mengjia Fan, Xinyu Bu, Wenxuan Wang, Wei Sun, Xiujuan Lin, Shifeng Huang, Changhong Yang. Stable self-polarization in lead-free Bi(Fe0.93Mn0.05Ti0.02)O3 thick films[J]. Journal of Advanced Dielectrics, 2022, 12(6): 2241005
    Download Citation