• Chinese Optics Letters
  • Vol. 19, Issue 8, 083602 (2021)
Vahid Foroughi Nezhad1、2, Chenglong You3, and Georgios Veronis1、2、*
Author Affiliations
  • 1School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, Louisiana 70803, USA
  • 2Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803, USA
  • 3Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
  • show less
    DOI: 10.3788/COL202119.083602 Cite this Article Set citation alerts
    Vahid Foroughi Nezhad, Chenglong You, Georgios Veronis. Nanoplasmonic magneto-optical isolator [Invited][J]. Chinese Optics Letters, 2021, 19(8): 083602 Copy Citation Text show less
    References

    [1] D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, H. Renner. What is—and what is not—an optical isolator. Nat. Photon., 7, 579(2013).

    [2] Z. Yu, G. Veronis, Z. Wang, S. Fan. One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal. Phys. Rev. Lett., 100, 023902(2008).

    [3] K. Fang, Z. Yu, S. Fan. Photonic Aharonov–Bohm effect based on dynamic modulation. Phys. Rev. Lett., 108, 153901(2012).

    [4] S. Yu, X. Piao, S. Koo, J. H. Shin, S. H. Lee, B. Min, N. Park. Mode junction photonics with a symmetry-breaking arrangement of mode-orthogonal heterostructures. Opt. Express, 19, 25500(2011).

    [5] A. E. Miroshnichenko, E. Brasselet, Y. S. Kivshar. Reversible optical nonreciprocity in periodic structures with liquid crystals. Appl. Phys. Lett., 96, 063302(2010).

    [6] H. Lira, Z. Yu, S. Fan, M. Lipson. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Phys. Rev. Lett., 109, 033901(2012).

    [7] Z. Yu, Z. Wang, S. Fan. One-way total reflection with one-dimensional magneto-optical photonic crystals. Appl. Phys. Lett., 90, 121133(2007).

    [8] N. Sugimoto, T. Shintaku, A. Tate, H. Terui, M. Shimokozono, E. Kubota, M. Ishii, Y. Inoue. Waveguide polarization-independent optical circulator. IEEE Photon. Technol. Lett., 11, 355(1999).

    [9] R. Takei, T. Mizumoto. Design and simulation of silicon waveguide optical circulator employing nonreciprocal phase shift. Jpn. J. Appl. Phys., 49, 052203(2010).

    [10] L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, C. A. Ross. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat. Photon., 5, 758(2011).

    [11] Z. Wang, S. Fan. Optical circulators in two-dimensional magneto-optical photonic crystals. Opt. Lett., 30, 1989(2005).

    [12] Y. Wang, D. Zhang, S. Xu, Z. Ouyang, J. Li. Low-loss Y-junction two-dimensional magneto-photonic crystals circulator using a ferrite cylinder. Opt. Commun., 369, 1(2016).

    [13] W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface plasmon subwavelength optics. Nature, 424, 824(2003).

    [14] S. A. Maier. Plasmonics: Fundamentals and Applications(2007).

    [15] A. R. Davoyan, N. Engheta. Nanoscale plasmonic circulator. New J. Phys., 15, 083054(2013).

    [16] D. Regatos, D. Fariña, A. Calle, A. Cebollada, B. Sepúlveda, G. Armelles, L. M. Lechuga. Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing. J. Appl. Phys., 108, 054502(2010).

    [17] B. Sepúlveda, L. M. Lechuga, G. Armelles. Magnetooptic effects in surface-plasmon-polaritons slab waveguides. J. Light. Technol., 24, 945(2006).

    [18] X. Luo, M. Zhou, J. Liu, T. Qiu, Z. Yu. Magneto-optical metamaterials with extraordinarily strong magneto-optical effect. Appl. Phys. Lett., 108, 131104(2016).

    [19] V. I. Belotelov, L. L. Doskolovich, A. K. Zvezdin. Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems. Phys. Rev. Lett., 98, 077401(2007).

    [20] B. Sepúlveda, J. B. González-Díaz, A. García-Martín, L. M. Lechuga, G. Armelles. Plasmon-induced magneto-optical activity in nanosized gold disks. Phys. Rev. Lett., 104, 147401(2010).

    [21] M. I. Abdelrahman, F. Monticone. Broadband and giant nonreciprocity at the subwavelength scale in magnetoplasmonic materials. Phys. Rev. B, 102, 155420(2020).

    [22] A. López-Ortega, M. Zapata-Herrera, N. Maccaferri, M. Pancaldi, M. Garcia, A. Chuvilin, P. Vavassori. Enhanced magnetic modulation of light polarization exploiting hybridization with multipolar dark plasmons in magnetoplasmonic nanocavities. Light. Sci. Appl., 9, 1(2020).

    [23] Ş. E. Kocabaş, G. Veronis, D. A. B. Miller, S. Fan. Modal analysis and coupling in metal-insulator-metal waveguides. Phys. Rev. B, 79, 035120(2009).

    [24] Z. Han, E. Forsberg, S. He. Surface plasmon gratings formed in metal-insulator-metal waveguides. IEEE Photon. Technol. Lett., 19, 91(2007).

    [25] V. F. Nezhad, S. Abaslou, M. S. Abrishamian. Plasmonic band-stop filter with asymmetric rectangular ring for WDM networks. J. Opt., 15, 055007(2013).

    [26] Z. Han, L. Liu, E. Forsberg. Ultra-compact directional couplers and Mach–Zehnder interferometers employing surface plasmon polaritons. Opt. Commun., 259, 690(2006).

    [27] Q. Zhang, X.-G. Huang, X.-S. Lin, J. Tao, X.-P. Jin. A subwavelength coupler-type MIM optical filter. Opt. Express, 17, 7549(2009).

    [28] A. Dolatabady, N. Granpayeh, V. F. Nezhad. A nanoscale refractive index sensor in two dimensional plasmonic waveguide with nanodisk resonator. Opt. Commun., 300, 265(2013).

    [29] K. Wen, Y. Hu, L. Chen, J. Zhou, L. Lei, Z. Guo. Fano resonance with ultra-high figure of merits based on plasmonic metal-insulator-metal waveguide. Plasmonics, 10, 27(2015).

    [30] Y. Huang, C. Min, P. Dastmalchi, G. Veronis. Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors. Opt. Express, 23, 14922(2015).

    [31] H. Lu, X. Liu, L. Wang, Y. Gong, D. Mao. Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt. Express, 19, 2910(2011).

    [32] Z. Yu, G. Veronis, S. Fan, M. L. Brongersma. Gain-induced switching in metal-dielectric-metal plasmonic waveguides. Appl. Phys. Lett., 92, 041117(2008).

    [33] C. Min, G. Veronis. Absorption switches in metal-dielectric-metal plasmonic waveguides. Opt. Express, 17, 10757(2009).

    [34] A. Haddadpour, V. F. Nezhad, Z. Yu, G. Veronis. Highly compact magneto-optical switches for metal-dielectric-metal plasmonic waveguides. Opt. Lett., 41, 4340(2016).

    [35] J.-S. Pae, S.-J. Im, K.-S. Ho, C.-S. Ri, S.-B. Ro, J. Herrmann. Ultracompact high-contrast magneto-optical disk resonator side-coupled to a plasmonic waveguide and switchable by an external magnetic field. Phys. Rev. B, 98, 041406(2018).

    [36] Y. Xu, X. Wang, H. Deng, K. Guo. Tunable all-optical plasmonic rectifier in nanoscale metal–insulator–metal waveguides. Opt. Lett., 39, 5846(2014).

    [37] H. Lu, X. Liu, D. Mao, L. Wang, Y. Gong. Tunable band-pass plasmonic waveguide filters with nanodisk resonators. Opt. Express, 18, 17922(2010).

    [38] T. Tepper, C. A. Ross. Pulsed laser deposition and refractive index measurement of fully substituted bismuth iron garnet films. J. Cryst. Growth, 255, 324(2003).

    [39] M. N. Deeter, S. M. Bon, G. W. Day, G. Diercks, S. Samuelson. Novel bulk iron garnets for magneto-optic magnetic field sensing. IEEE Trans. Magn., 30, 4464(1994).

    [40] K. Liu, A. Torki, S. He. One-way surface magnetoplasmon cavity and its application for nonreciprocal devices. Opt. Lett., 41, 800(2016).

    [41] P. Zeeman. The effect of magnetisation on the nature of light emitted by a substance. Nature, 55, 347(1897).

    [42] J. Wang, K. H. Fung, H. Y. Dong, N. X. Fang. Zeeman splitting of photonic angular momentum states in a gyromagnetic cylinder. Phys. Rev. B, 84, 235122(2011).

    [43] Q. Li, T. Wang, Y. Su, M. Yan, M. Qiu. Coupled mode theory analysis of mode-splitting in coupled cavity system. Opt. Express, 18, 8367(2010).

    CLP Journals

    [1] Shengfa Fan, Yihong Qi, Yueping Niu, Shangqing Gong. Nonreciprocal transmission of multi-band optical signals in thermal atomic systems[J]. Chinese Optics Letters, 2022, 20(1): 012701

    Data from CrossRef

    [1] Mohammad Bagher Heydari, Morteza Mohammadi Shirkolaei, Majid Karimipour. Theoretical analysis of hybrid surface plasmon polaritons in plasma-based elliptical structures with graphene layers for THz applications. The European Physical Journal D, 77, 58(2023).

    Vahid Foroughi Nezhad, Chenglong You, Georgios Veronis. Nanoplasmonic magneto-optical isolator [Invited][J]. Chinese Optics Letters, 2021, 19(8): 083602
    Download Citation