• Laser & Optoelectronics Progress
  • Vol. 62, Issue 2, 0212004 (2025)
Fuzhen Huang* and Tianci Wang
Author Affiliations
  • College of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China
  • show less
    DOI: 10.3788/LOP241147 Cite this Article Set citation alerts
    Fuzhen Huang, Tianci Wang. Lightweight GCP-YOLOv8s for Insulator Defect Detection[J]. Laser & Optoelectronics Progress, 2025, 62(2): 0212004 Copy Citation Text show less
    Structure of YOLOv8s network
    Fig. 1. Structure of YOLOv8s network
    Structure of GSConv network
    Fig. 2. Structure of GSConv network
    Structure of C2f network and Bottleneck
    Fig. 3. Structure of C2f network and Bottleneck
    Structure of C2f-Faster network
    Fig. 4. Structure of C2f-Faster network
    PConv working principle and FasterNet structure
    Fig. 5. PConv working principle and FasterNet structure
    Structure of CF-EMA network
    Fig. 6. Structure of CF-EMA network
    Feature fusion structure after adding small defect detection layer. (a) Default path of YOLOv8s; (b) after adjusting
    Fig. 7. Feature fusion structure after adding small defect detection layer. (a) Default path of YOLOv8s; (b) after adjusting
    Structure of GCP-YOLOv8s network
    Fig. 8. Structure of GCP-YOLOv8s network
    Aerial images of partial insulators. (a) Display of defects; (b) examples of data enhancement; (c) fogging effect under different fog thickness (L: brightness, D: fog thickness)
    Fig. 9. Aerial images of partial insulators. (a) Display of defects; (b) examples of data enhancement; (c) fogging effect under different fog thickness (L: brightness, D: fog thickness)
    Information visualization of insulator defect dataset. (a) Category and quantity; (b) distribution of central points; (c) defect size distribution
    Fig. 10. Information visualization of insulator defect dataset. (a) Category and quantity; (b) distribution of central points; (c) defect size distribution
    Comparison of mAP@0.5 of GCP-YOLOv8s and YOLOv8s
    Fig. 11. Comparison of mAP@0.5 of GCP-YOLOv8s and YOLOv8s
    Comparison of mAP@0.5 of each model
    Fig. 12. Comparison of mAP@0.5 of each model
    Detection effect of YOLOv8s and GCP-YOLOv8s in different backgrounds
    Fig. 13. Detection effect of YOLOv8s and GCP-YOLOv8s in different backgrounds
    Experimental parameterParameter quantity
    Epoch300
    Batch size8
    Learning rate0.01
    OptimizerSGD
    Momentum0.937
    Weight decay0.0005
    Input size640
    Table 1. Experimental parameters
    ModelGSConvCF-EMAP2

    mAP@

    0.5/%

    AP/%Parameters/106Model Size /106
    ins.def.sel.
    YOLOv8s×××95.898.889.698.911.322.5
    G-YOLOv8s××96.098.889.899.49.820.2
    GC-YOLOv8s×96.899.092.499.16.613.7
    GCP-YOLOv8s97.699.294.399.47.214.7
    Table 2. GCP-YOLOv8s ablation experiment
    ModelmAP@0.5/%Parameters /106Model Size /106FPS
    SSD78.325.651.341
    Faster R-CNN75.772.4144.87
    YOLOv5s93.07.114.6107
    YOLOv7s78.936.574.885
    YOLOv8s95.811.322.5121
    GCP-YOLOv8s97.67.214.796
    Table 3. Comparative experiment among GCP-YOLOv8s and other algorithms