• Advanced Photonics
  • Vol. 2, Issue 6, 066001 (2020)
Olivier Spitz1、2、3、*, Jiagui Wu3、4, Andreas Herdt5, Grégory Maisons2, Mathieu Carras2, Wolfgang Elsäßer5, Chee-Wei Wong3, and Frédéric Grillot1、3、6
Author Affiliations
  • 1LTCI, Télécom Paris, Institut Polytechnique de Paris, Palaiseau, France
  • 2mirSense, Centre d’Intégration NanoInnov, Palaiseau, France
  • 3University of California Los Angeles, Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, Los Angeles, California, United States
  • 4Southwest University, College of Electronic and Information Engineering, Chongqing, China
  • 5Technische Universität Darmstadt, Darmstadt, Germany
  • 6University of New Mexico, Center for High Technology Materials, Albuquerque, New Mexico, United States
  • show less
    DOI: 10.1117/1.AP.2.6.066001 Cite this Article Set citation alerts
    Olivier Spitz, Jiagui Wu, Andreas Herdt, Grégory Maisons, Mathieu Carras, Wolfgang Elsäßer, Chee-Wei Wong, Frédéric Grillot. Extreme events in quantum cascade lasers[J]. Advanced Photonics, 2020, 2(6): 066001 Copy Citation Text show less
    References

    [1] A. Toffoli et al. Occurrence of extreme waves in three-dimensional mechanically generated wave fields propagating over an oblique current. Nat. Hazards Earth Syst. Sci., 11, 895-903(2011).

    [2] H. L. D. S. Cavalcante et al. Predictability and suppression of extreme events in a chaotic system. Phys. Rev. Lett., 111, 198701(2013).

    [3] T. C. Peterson, P. A. Stott, S. Herring. Explaining extreme events of 2011 from a climate perspective. Bull. Am. Meteorol. Soc., 93, 1041-1067(2012).

    [4] N. S. Frolov et al. Statistical properties and predictability of extreme epileptic events. Sci. Rep., 9, 7243(2019).

    [5] S. Bialonski, G. Ansmann, H. Kantz. Data-driven prediction and prevention of extreme events in a spatially extended excitable system. Phys. Rev. E, 92, 042910(2015).

    [6] N. Akhmediev et al. Roadmap on optical rogue waves and extreme events. J. Opt., 18, 063001(2016).

    [7] C. Bonatto et al. Deterministic optical rogue waves. Phys. Rev. Lett., 107, 053901(2011).

    [8] D. Solli et al. Optical rogue waves. Nature, 450, 1054-1057(2007).

    [9] C. Liu et al. Triggering extreme events at the nanoscale in photonic seas. Nat. Phys., 11, 358-363(2015).

    [10] R. Höhmann et al. Freak waves in the linear regime: a microwave study. Phys. Rev. Lett., 104, 093901(2010).

    [11] V. Makarov, V. Nekorkin, M. Velarde. Spiking behavior in a noise-driven system combining oscillatory and excitatory properties. Phys. Rev. Lett., 86, 3431-3434(2001).

    [12] E. Viktorov, T. Erneux. Self-sustained pulsations in a quantum-dot laser. Phys. Rev. E, 90, 052914(2014).

    [13] S.-S. Lin, S.-K. Hwang, J.-M. Liu. High-power noise-like pulse generation using a 1.56-μm all-fiber laser system. Opt. Express, 23, 18256-18268(2015). https://doi.org/10.1364/OE.23.018256

    [14] A. Montina et al. Non-Gaussian statistics and extreme waves in a nonlinear optical cavity. Phys. Rev. Lett., 103, 173901(2009).

    [15] A. K. Dal Bosco, D. Wolfersberger, M. Sciamanna. Extreme events in time-delayed nonlinear optics. Opt. Lett., 38, 703-705(2013).

    [16] D. Choi et al. Low-frequency fluctuations in an external-cavity laser leading to extreme events. Phys. Rev. E, 93, 042216(2016).

    [17] M. G. Kovalsky, A. A. Hnilo, J. R. Tredicce. Extreme events in the Ti: sapphire laser. Opt. Lett., 36, 4449-4451(2011).

    [18] S. Perrone et al. Controlling the likelihood of rogue waves in an optically injected semiconductor laser via direct current modulation. Phys. Rev. A, 89, 033804(2014).

    [19] R. Karnatak et al. Route to extreme events in excitable systems. Phys. Rev. E, 90, 022917(2014).

    [20] O. Spitz et al. Low-frequency fluctuations of a mid-infrared quantum cascade laser operating at cryogenic temperatures. Laser Phys. Lett., 15, 116201(2018).

    [21] J. Faist et al. Quantum cascade laser. Science, 264, 553-556(1994).

    [22] M. S. Vitiello et al. Quantum cascade lasers: 20 years of challenges. Opt. Express, 23, 5167-5182(2015).

    [23] H. D. Tholl. Review and prospects of optical countermeasure technologies. Proc. SPIE, 10797, 1079702(2018).

    [24] X. Pang et al. Gigabit free-space multi-level signal transmission with a mid-infrared quantum cascade laser operating at room temperature. Opt. Lett., 42, 3646-3649(2017).

    [25] A. G. Davies et al. Terahertz spectroscopy of explosives and drugs. Mater. Today, 11, 18-26(2008).

    [26] A. W. Lee et al. Real-time terahertz imaging over a standoff distance (>25  meters). Appl. Phys. Lett., 89, 141125(2006). https://doi.org/10.1063/1.2360210

    [27] L. Jumpertz et al. Chaotic light at mid-infrared wavelength. Light Sci. Appl., 5, e16088(2016).

    [28] O. Spitz et al. Chaotic optical power dropouts driven by low frequency bias forcing in a mid-infrared quantum cascade laser. Sci. Rep., 9, 4451(2019).

    [29] N. Yu et al. Coherent coupling of multiple transverse modes in quantum cascade lasers. Phys. Rev. Lett., 102, 013901(2009).

    [30] A. K. Wójcik et al. Self-synchronization of laser modes and multistability in quantum cascade lasers. Phys. Rev. Lett., 106, 133902(2011).

    [31] S. Sauvage et al. Third-harmonic generation in InAs/GaAs self-assembled quantum dots. Phys. Rev. B, 59, 9830-9833(1999).

    [32] P. Friedli et al. Four-wave mixing in a quantum cascade laser amplifier. Appl. Phys. Lett., 102, 222104(2013).

    [33] A. Delga, L. Leviandier. Free-space optical communications with quantum cascade lasers. Proc. SPIE, 10926, 1092617(2019).

    [34] K. Schires et al. Rare disruptive events in polarisation-resolved dynamics of optically injected 1550 nm VCSELs. Electron. Lett., 48, 872-874(2012).

    [35] J. Zamora-Munt et al. Rogue waves in optically injected lasers: origin, predictability, and suppression. Phys. Rev. A, 87, 035802(2013).

    [36] M. Turconi et al. Control of excitable pulses in an injection-locked semiconductor laser. Phys. Rev. E, 88, 022923(2013).

    [37] A. Hurtado, J. Javaloyes. Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems. Appl. Phys. Lett., 107, 241103(2015).

    [38] N. M. Alvarez, S. Borkar, C. Masoller. Predictability of extreme intensity pulses in optically injected semiconductor lasers. Eur. Phys. J. Spec. Top., 226, 1971-1977(2017).

    [39] T. Jin, C. Siyu, C. Masoller. Generation of extreme pulses on demand in semiconductor lasers with optical injection. Opt. Express, 25, 31326-31336(2017).

    [40] J. A. Reinoso, J. Zamora-Munt, C. Masoller. Extreme intensity pulses in a semiconductor laser with a short external cavity. Phys. Rev. E, 87, 062913(2013).

    [41] C.-H. Uy, D. Rontani, M. Sciamanna. Vectorial extreme events in VCSEL polarization dynamics. Opt. Lett., 42, 2177-2180(2017).

    [42] É. Mercier et al. Numerical study of extreme events in a laser diode with phase-conjugate optical feedback. Phys. Rev. E, 91, 042914(2015).

    [43] M. W. Lee et al. Demonstration of optical rogue waves using a laser diode emitting at 980 nm and a fiber Bragg grating. Opt. Lett., 41, 4476-4479(2016).

    [44] A. Evans et al. High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers. Appl. Phys. Lett., 84, 314-316(2004).

    [45] M. Carras et al. Top grating index-coupled distributed feedback quantum cascade lasers. Appl. Phys. Lett., 93, 011109(2008).

    [46] M. Carras et al. Room-temperature continuous-wave metal grating distributed feedback quantum cascade lasers. Appl. Phys. Lett., 96, 161105(2010).

    [47] J.-D. Park et al. Low-frequency self-pulsations in asymmetric external-cavity semiconductor lasers due to multiple-feedback effects. Opt. Lett., 14, 1054-1056(1989).

    [48] J. Martinerie et al. Epileptic seizures can be anticipated by non-linear analysis. Nat. Med., 4, 1173-1176(1998).

    [49] J. Feigenbaum. Financial physics. Rep. Prog. Phys., 66, 1611(2003).

    [50] N. Laptev et al. Time-series extreme event forecasting with neural networks at Uber, 1-5(2017).

    [51] V. Dakos et al. Slowing down as an early warning signal for abrupt climate change. Proc. Natl. Acad. Sci. U. S. A., 105, 14308-14312(2008).

    [52] J. Robertson et al. Controlled inhibition of spiking dynamics in VCSELs for neuromorphic photonics: theory and experiments. Opt. Lett., 42, 1560-1563(2017).

    [53] J. Robertson et al. Toward neuromorphic photonic networks of ultrafast spiking laser neurons. IEEE J. Sel. Top. Quantum Electron., 26, 7700715(2020).

    [54] J. Zamora-Munt, C. R. Mirasso, R. Toral. Suppression of deterministic and stochastic extreme desynchronization events using anticipated synchronization. Phys. Rev. E, 89, 012921(2014).

    [55] N. M. Granese et al. Extreme events and crises observed in an all-solid-state laser with modulation of losses. Opt. Lett., 41, 3010-3012(2016).

    [56] F. Marino et al. Experimental evidence of stochastic resonance in an excitable optical system. Phys. Rev. Lett., 88, 040601(2002).

    [57] V. K. Vanag et al. Oscillatory cluster patterns in a homogeneous chemical system with global feedback. Nature, 406, 389-391(2000).

    [58] F. Sagués, I. R. Epstein. Nonlinear chemical dynamics. Dalton Trans., 7, 1201-1217(2003).

    [59] B. V. Benjamin et al. Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations. Proc. IEEE, 102, 699-716(2014).

    [60] E. C. Mos et al. Optical neuron by use of a laser diode with injection seeding and external optical feedback. IEEE Trans. Neural Networks, 11, 988-996(2000).

    [61] P. R. Prucnal et al. Recent progress in semiconductor excitable lasers for photonic spike processing. Adv. Opt. Photonics, 8, 228-299(2016).

    [62] A. Hurtado et al. Investigation of vertical cavity surface emitting laser dynamics for neuromorphic photonic systems. Appl. Phys. Lett., 100, 103703(2012).

    [63] J. Robertson, E. Wade, A. Hurtado. Electrically controlled neuron-like spiking regimes in vertical-cavity surface-emitting lasers at ultrafast rates. IEEE J. Sel. Top. Quantum Electron., 25, 5100307(2019).

    [64] Y. Zhang et al. Spike encoding and storage properties in mutually coupled vertical-cavity surface-emitting lasers subject to optical pulse injection. Appl. Opt., 57, 1731-1737(2018).

    [65] M. A. Nahmias et al. A leaky integrate-and-fire laser neuron for ultrafast cognitive computing. IEEE J. Sel. Top. Quantum Electron., 19, 1800212(2013).

    [66] E. M. Izhikevich. Which model to use for cortical spiking neurons?. IEEE Trans. Neural Networks, 15, 1063-1070(2004).

    [67] D. Sornette, G. Ouillon. Dragon-kings: mechanisms, statistical methods and empirical evidence. Eur. Phys. J. Spec. Top., 205, 1-26(2012).

    [68] F. Marino et al. Thermo-optical ‘canard orbits’ and excitable limit cycles. Phys. Rev. Lett., 92, 073901(2004).

    [69] A. Tierno, N. Radwell, T. Ackemann. Low-frequency self-pulsing in single-section quantum-dot laser diodes and its relation to optothermal pulsations. Phys. Rev. A, 84, 043828(2011).

    [70] M. Dillane et al. Square wave excitability in quantum dot lasers under optical injection. Opt. Lett., 44, 347-350(2019).

    [71] J. Tiana-Alsina, C. Quintero-Quiroz, C. Masoller. Comparing the dynamics of periodically forced lasers and neurons. New J. Phys., 21, 103039(2019).

    [72] A. Dolcemascolo et al. Effective low-dimensional dynamics of a mean-field coupled network of slow-fast spiking lasers. Phys. Rev. E, 101, 052208(2020).

    [73] G. Edwards et al. Tissue ablation by a free-electron laser tuned to the amide II band. Nature, 371, 416-419(1994).

    [74] Y. Huang, J. U. Kang. Quantum cascade laser thermal therapy guided by FDOCT. Chin. Opt. Lett., 11, 011701(2013).

    [75] M. Montesinos-Ballester et al. Optical modulation in Ge-rich SiGe waveguides in the mid-infrared wavelength range up to 11  μm. Commun. Mater., 1, 6(2020). https://doi.org/10.1038/s43246-019-0003-8

    Olivier Spitz, Jiagui Wu, Andreas Herdt, Grégory Maisons, Mathieu Carras, Wolfgang Elsäßer, Chee-Wei Wong, Frédéric Grillot. Extreme events in quantum cascade lasers[J]. Advanced Photonics, 2020, 2(6): 066001
    Download Citation