• Photonics Research
  • Vol. 9, Issue 7, 1409 (2021)
Ruijia Xu, Xiaocan Xu, Bo-Ru Yang, Xuchun Gui, Zong Qin, and Yu-Sheng Lin*
Author Affiliations
  • School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
  • show less
    DOI: 10.1364/PRJ.420876 Cite this Article Set citation alerts
    Ruijia Xu, Xiaocan Xu, Bo-Ru Yang, Xuchun Gui, Zong Qin, Yu-Sheng Lin. Actively logical modulation of MEMS-based terahertz metamaterial[J]. Photonics Research, 2021, 9(7): 1409 Copy Citation Text show less
    References

    [1] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85, 3966-3969(2000).

    [2] D. R. Smith, J. B. Pendry, M. C. K. Wiltshire. Metamaterials and negative refractive index. Science, 305, 788-792(2004).

    [3] C. M. Watts, X. L. Liu, W. J. Padilla. Metamaterial electromagnetic wave absorbers. Adv. Mater., 24, OP98-OP120(2012).

    [4] Y. X. Cui, K. H. Fung, J. Xu, H. J. Ma, Y. Jin, S. L. He, N. X. Fang. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett., 12, 1443-1447(2012).

    [5] M. M. Hossain, B. H. Jia, M. Gu. A metamaterial emitter for highly efficient radiative cooling. Adv. Opt. Mater., 3, 1047-1051(2015).

    [6] W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. G. Guan, V. M. Shalaev, A. V. Kildishev. Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Adv. Mater., 26, 7959-7965(2014).

    [7] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith. Metamaterial electromagnetic cloak at microwave frequencies. Science, 314, 977-980(2006).

    [8] H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt. Active terahertz metamaterial devices. Nature, 444, 597-600(2006).

    [9] X. Xu, R. Xu, Y.-S. Lin. Tunable terahertz double split-ring metamaterial with polarization-sensitive characteristic. Opt. Laser Technol., 141, 107103(2021).

    [10] Y. Wen, K. Chen, Y.-S. Lin. Terahertz metamaterial resonator with tunable Fano-resonance characteristic. Results Phys., 23, 104049(2021).

    [11] F. Lu, H. Ou, Y.-S. Lin. Reconfigurable terahertz switch using flexible L-shaped metamaterial. Opt. Lett., 45, 6482-6485(2020).

    [12] W. Yang, Y.-S. Lin. Tunable metamaterial filter for optical communication in the terahertz frequency range. Opt. Express, 28, 17620-17629(2020).

    [13] Y. Zhang, P. Lin, Y.-S. Lin. Tunable split-disk metamaterial absorber for sensing application. Nanomaterials, 11, 598(2021).

    [14] Y.-S. Lin, J. Dai, Z. Zeng, B.-R. Yang. Metasurface color filters using aluminum and lithium niobate configurations. Nanoscale Res. Lett., 15, 77(2020).

    [15] Y.-S. Lin, Z. Xu. Reconfigurable metamaterials for optoelectronic applications. Int. J. Optomechatron., 14, 78-93(2020).

    [16] D. Zheng, Y.-S. Lin. Tunable dual-split-disk resonator with electromagnetically induced transparency characteristic. Adv. Mater. Technol., 5, 2000584(2020).

    [17] X. J. Ni, Z. J. Wong, M. Mrejen, Y. Wang, X. Zhang. An ultrathin invisibility skin cloak for visible light. Science, 349, 1310-1314(2015).

    [18] H. Ou, F. Lu, Z. Xu, Y.-S. Lin. Terahertz metamaterial with multiple resonances for biosensing application. Nanomaterials, 10, 1038(2020).

    [19] R. Xu, Y.-S. Lin. Tunable infrared metamaterial emitter for gas sensing application. Nanomaterials, 10, 1442(2020).

    [20] D. Shrekenhamer, W. C. Chen, W. J. Padilla. Liquid crystal tunable metamaterial absorber. Phys. Rev. Lett., 110, 177403(2013).

    [21] M. Gupta, Y. K. Srivastava, R. Singh. A toroidal metamaterial switch. Adv. Mater., 30, 1704845(2018).

    [22] R. N. Dao, X. R. Kong, H. F. Zhang, X. L. Tian. A tunable ultra-broadband metamaterial absorber with multilayered structure. Plasmonics, 15, 169-175(2020).

    [23] K. Appavoo, R. F. Haglund. Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial. Nano Lett., 11, 1025-1031(2011).

    [24] H. Wang, Y. Yang, L. P. Wang. Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer. Appl. Phys. Lett., 105, 071907(2014).

    [25] J. Y. Ou, E. Plum, J. F. Zhang, N. I. Zheludev. Giant nonlinearity of an optically reconfigurable plasmonic metamaterial. Adv. Mater., 28, 729-733(2016).

    [26] X. Hu, Y.-S. Lin. Programmable terahertz metamaterial with multiple logic characteristics. Results Phys., 18, 103267(2020).

    [27] Y. Han, J. Lin, Y.-S. Lin. Tunable metamaterial-based silicon waveguide. Opt. Lett., 45, 6619-6622(2020).

    [28] Z. Xu, Y.-S. Lin. A stretchable terahertz parabolic-shaped metamaterial. Adv. Opt. Mater., 7, 1900379(2019).

    [29] T. Xu, X. Xu, Y.-S. Lin. Tunable terahertz free spectra range using electric split-ring metamaterial. J. Microelectromech. Syst., 30, 309-314(2021).

    [30] T. Xu, R. Xu, Y.-S. Lin. Tunable terahertz metamaterial using electrostatically electric split-ring resonator. Results Phys., 19, 103638(2020).

    [31] R. Xu, Y.-S. Lin. Reconfigurable multiband terahertz metamaterial using triple-cantilevers resonator array. J. Microelectromech. Syst., 29, 1167-1172(2020).

    [32] F. Zhan, Y.-S. Lin. Tunable multiresonance using complementary circular metamaterial. Opt. Lett., 45, 3633-3636(2020).

    [33] R. Xu, Y.-S. Lin. Flexible and controllable metadevice using self-assembly MEMS actuator. Nano Lett., 21, 3205-3210(2021).

    [34] Z. Xu, Z. Lin, S. Cheng, Y.-S. Lin. Reconfigurable and tunable terahertz wrench-shape metamaterial performing programmable characteristic. Opt. Lett., 44, 3944-3947(2019).

    [35] Y. Liao, Y.-S. Lin. Reconfigurable terahertz metamaterial using split-ring meta-atoms with multifunctional electromagnetic characteristics. Appl. Sci., 10, 5267(2020).

    [36] Z. W. Wang, Q. Zhang, K. Zhang, G. K. Hu. Tunable digital metamaterial for broadband vibration isolation at low frequency. Adv. Mater., 28, 9857-9861(2016).

    [37] K. J. Fu, Z. H. Zhao, L. H. Jin. Programmable granular metamaterials for reusable energy absorption. Adv. Funct. Mater., 29, 1901258(2019).

    [38] H. B. Fang, S. C. A. Chu, Y. T. Xia, K. W. Wang. Programmable self-locking origami mechanical metamaterials. Adv. Mater., 30, 1706311(2018).

    [39] F. Zhu, Y.-S. Lin. Programmable multidigit metamaterial using terahertz electric spilt-ring resonator. Opt. Laser Technol., 134, 106635(2021).

    [40] D. H. Le, S. Lim. Four-mode programmable metamaterial using ternary foldable origami. ACS Appl. Mater. Interfaces, 11, 28554-28561(2019).

    [41] M. Shavezipur, W. J. Gou, C. Carraro, R. Maboudian. Characterization of adhesion force in MEMS at high temperature using thermally actuated microstructures. J. Microelectromech. Syst., 21, 541-548(2012).

    Ruijia Xu, Xiaocan Xu, Bo-Ru Yang, Xuchun Gui, Zong Qin, Yu-Sheng Lin. Actively logical modulation of MEMS-based terahertz metamaterial[J]. Photonics Research, 2021, 9(7): 1409
    Download Citation