• Advanced Photonics
  • Vol. 2, Issue 3, 036006 (2020)
Lu Lan1, Yueming Li2, Tiffany Yang-Tran1, Ying Jiang1, Yingchun Cao3, and Ji-Xin Cheng1、3、4、*
Author Affiliations
  • 1Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
  • 2Boston University, Department of Mechanical Engineering, Boston, Massachusetts, United States
  • 3Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
  • 4Boston University Photonics Center, Boston, Massachusetts, United States
  • show less
    DOI: 10.1117/1.AP.2.3.036006 Cite this Article Set citation alerts
    Lu Lan, Yueming Li, Tiffany Yang-Tran, Ying Jiang, Yingchun Cao, Ji-Xin Cheng. Ultraefficient thermoacoustic conversion through a split ring resonator[J]. Advanced Photonics, 2020, 2(3): 036006 Copy Citation Text show less
    References

    [1] A. G. Bell. On the production of sound by light, 115-136.

    [2] T. Bowen. Radiation-induced thermoacoustic imaging(1983).

    [3] H. F. Zhang et al. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol., 24, 848-851(2006).

    [4] X. Wang et al. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol., 21, 803-806(2003).

    [5] J. Aguirre et al. Precision assessment of label-free psoriasis biomarkers with ultra-broadband optoacoustic mesoscopy. Nat. Biomed. Eng., 1, 0068(2017).

    [6] M. C. Finlay et al. Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study. Light: Sci. Appl., 6, e17103(2017).

    [7] L. Lan et al. A fiber optoacoustic guide with augmented reality for precision breast-conserving surgery. Light: Sci. Appl., 7, 2(2018).

    [8] H. W. Baac et al. Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy. Sci. Rep., 2, 989(2012).

    [9] Y. Jiang et al. Optoacoustic brain stimulation at submillimeter spatial precision. Nat. Commun., 11, 881(2020).

    [10] L. V. Wang, J. Yao. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods, 13, 627-638(2016).

    [11] J. Wu et al. Semiconducting polymer nanoparticles for centimeters-deep photoacoustic imaging in the second near-infrared window. Adv. Mater., 29, 1703403(2017).

    [12] S. Semenov. Microwave tomography: review of the progress towards clinical applications. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., 367, 3021-3042(2009).

    [13] A. Yan et al. Microwave-induced thermoacoustic tomography through an adult human skull. Med. Phys., 46, 1793-1797(2019).

    [14] L. Nie et al. Thermoacoustic molecular tomography with magnetic nanoparticle contrast agents for targeted tumor detection. Med. Phys., 37, 4193-4200(2010).

    [15] M. Pramanik et al. Single-walled carbon nanotubes as a multimodal-thermoacoustic and photoacoustic-contrast agent. J. Biomed. Opt., 14, 034018(2009).

    [16] O. Ogunlade, P. Beard. Exogenous contrast agents for thermoacoustic imaging: an investigation into the underlying sources of contrast. Med. Phys., 42, 170-181(2015).

    [17] Y. Tufail et al. Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound. Nat. Protoc., 6, 1453(2011).

    [18] W. J. Tyler, S. W. Lani, G. M. Hwang. Ultrasonic modulation of neural circuit activity. Curr. Opin. Neurobiol., 50, 222-231(2018).

    [19] H. Liang, J. Tang, M. Halliwell. Sonoporation, drug delivery, and gene therapy. Proc. Inst. Mech. Eng., Part H: J. Eng. Med., 224, 343-361(2010).

    [20] R. L. King et al. Effective parameters for ultrasound-induced in vivo neurostimulation. Ultrasound Med. Biol., 39, 312-331(2013).

    [21] L. Tang et al. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nat. Photonics, 2, 226-229(2008).

    [22] E. Cubukcu et al. Plasmonic laser antenna. Appl. Phys. Lett., 89, 093120(2006).

    [23] S. Pillai et al. Surface plasmon enhanced silicon solar cells. J. Appl. Phys., 101, 093105(2007).

    [24] L. Novotny, S. J. Stranick. Near-field optical microscopy and spectroscopy with pointed probes. Annu. Rev. Phys. Chem., 57, 303-331(2006).

    [25] A. Kinkhabwala et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics, 3, 654-657(2009).

    [26] J. B. Pendry et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech., 47, 2075-2084(1999).

    [27] R. A. Shelby, D. R. Smith, S. Schultz. Experimental verification of a negative index of refraction. Science, 292, 77-79(2001).

    [28] Y. Cui, C. Yuan, Z. Ji. A review of microwave-induced thermoacoustic imaging: excitation source, data acquisition system and biomedical applications. J. Innovative Opt. Health Sci., 10, 1730007(2017).

    [29] K. I. Maslov, L. V. Wang. Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser. J. Biomed. Opt., 13, 024006(2008).

    [30] R. E. Collin. Foundations for Microwave Engineering(2007).

    [31] O. Sydoruk et al. Analytical formulation for the resonant frequency of split rings. J. Appl. Phys., 105, 014903(2009).

    [32] H. K. Khattak, P. Bianucci, A. D. Slepkov. Linking plasma formation in grapes to microwave resonances of aqueous dimers. Proc. Natl. Acad. Sci. U. S. A., 116, 4000-4005(2019).

    [33] T. J. Allen, B. Cox, P. C. Beard. Generating photoacoustic signals using high-peak power pulsed laser diodes. Proc. SPIE, 5697, 233-242(2005).

    [34] S. Yang, Y. Wang, H. Sun. Advances and prospects for whispering gallery mode microcavities. Adv. Opt. Mater., 3, 1136-1162(2015).

    [35] H. Li et al. A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy. Sci. Rep., 4, 4496(2014).

    [36] M. G. Shapiro et al. Infrared light excites cells by changing their electrical capacitance. Nat. Commun., 3, 736(2012).

    [37] S. S. Eaton, G. R. Eaton, L J. Berliner. Biomedical EPR-Part B: Methodology, Instrumentation, and Dynamics, 24(2004).

    [38] P. Gay-Balmaz, O. J. Martin. Electromagnetic resonances in individual and coupled split-ring resonators. J. Appl. Phys., 92, 2929-2936(2002).

    [39] G. K. Lewis et al. Design and evaluation of a wearable self-applied therapeutic ultrasound device for chronic myofascial pain. Ultrasound Med. Biol., 39, 1429-1439(2013).

    [40] W. Shi et al. Optical resolution photoacoustic microscopy using novel high-repetition-rate passively Q-switched microchip and fiber lasers. J. Biomed. Opt., 15, 056017(2010).

    CLP Journals

    [1] Frederic Cegla. Microwaves trigger thermo-acoustic ultrasound generation[J]. Advanced Photonics, 2020, 2(3): 030501

    Lu Lan, Yueming Li, Tiffany Yang-Tran, Ying Jiang, Yingchun Cao, Ji-Xin Cheng. Ultraefficient thermoacoustic conversion through a split ring resonator[J]. Advanced Photonics, 2020, 2(3): 036006
    Download Citation