• Chinese Optics Letters
  • Vol. 19, Issue 9, 091301 (2021)
Jiangbing Du*, Weihong Shen, Jiacheng Liu, Yufeng Chen, Xinyi Chen, and Zuyuan He**
Author Affiliations
  • State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    [1] S. Berdagué, P. Facq. Mode division multiplexing in optical fibers. Appl. Opt., 21, 1950(1982).
    [2] C. Sun, M. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, V. M. Stojanović. Single-chip microprocessor that communicates directly using light. Nature, 528, 534(2015).
    [3] S. C. Gupta. Textbook on Optical fiber Communication and Its Applications(2018).
    [4] P. J. Winzer. Scaling optical fiber networks: challenges and solutions. Opt. Photon. News, 26, 28(2015).
    [5] D. Richardson, J. Fini, L. Nelson. Space-division multiplexing in optical fibres. Nat. Photon., 7, 354(2013).
    [6] T. Mizuno, H. Takara, K. Shibahara, A. Sano, Y. Miyamoto. Dense space division multiplexed transmission over multicore and multimode fiber for long-haul transport systems. J. Lightwave Technol., 34, 1484(2016).
    [7] F. Hamaoka, K. Minoguchi, T. Sasai, A. Matushita, M. Nakamura, S. Okamoto, E. Yamazaki, Y. Kisaka. 150.3-Tb/s ultra-wideband (S, C, and L bands) single-mode fibre transmission over 40-km using >519 Gb/s/A PDM-128QAM signals. European Conference on Optical Communication (ECOC)(2018).
    [8] G. Rademacher, B. J. Puttnam, R. S. Luís, J. Sakaguchi, W. Klaus, T. A. Eriksson, Y. Awaji, T. Hayashi, T. Nagashima, T. Nakanishi, T. Taru, T. Takahata, T. Kobayashi, H. Furukawa, N. Wada. 10.66 peta-bit/s transmission over a 38-core-three-mode fiber. Optical Fiber Communication Conference (OFC)(2020).
    [9] T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, M. Koshiba. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission. J. Lightwave Technol., 30, 2421(2012).
    [10] J. Driscoll, R. Grote, B. Souhan, J. Dadap, M. Lu, R. Osgood. Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing. Opt. Lett., 38, 1854(2013).
    [11] W. Chen, P. Wang, J. Yang. Mode multi/demultiplexer based on cascaded asymmetric Y-junctions. Opt. Express, 21, 25113(2013).
    [12] J. Xing, Z. Li, X. Xiao, J. Yu, Y. Yu. Two-mode multiplexer and demultiplexer based on adiabatic couplers. Opt. Lett., 38, 3468(2013).
    [13] C. Sun, Y. Yu, G. Chen, X. Zhang. Silicon mode multiplexer processing dual-path mode-division multiplexing signals. Opt. Lett., 41, 5511(2016).
    [14] M. Greenberg, M. Orenstein. Multimode add-drop multiplexing by adiabatic linearly tapered coupling. Opt. Express, 13, 9381(2005).
    [15] D. Dai, C. Li, S. Wang, H. Wu, Y. Shi, Z. Wu, S. Gao, T. Dai, H. Yu, H. Tsang. 10-channel mode (de)multiplexer with dual polarizations. Laser Photon. Rev., 12, 1700109(2018).
    [16] L. W. Luo, N. Ophir, C. Chen, L. Gabrielli, C. Poitras, K. Bergmen, M. Lipson. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun., 5, 3069(2014).
    [17] J. Wang, S. Chen, D. Dai. Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division multiplexed on-chip optical interconnects. Opt. Lett., 39, 6993(2014).
    [18] R. Baets, A. Z. Subramanian, S. Clemmen, B. Kuyken, P. Bienstman, N. Le Thomas, G. Roelkens, D. Van Thourhout, P. Helin, S. Severi. Silicon photonics: silicon nitride versus silicon-on-insulator. Optical Fiber Communication Conference(2016).
    [19] Y. Yang, Y. Li, Y. Huang, A. Poon. Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators. Opt. Express, 22, 22172(2014).
    [20] J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, K. Richardson. Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor. Opt. Express, 15, 2307(2007).
    [21] W. C. Tan, M. E. Solmaz, J. Gardner, R. Atkins, C. Madsen. Optical characterization of a-As2S3 thin films prepared by magnetron sputtering. J. Appl. Phys., 107, 033524(2010).
    [22] C. C. Huang, D. W. Hewak, J. V. Badding. Deposition and characterization of germanium sulphide glass planar waveguides. Opt. Express, 12, 2501(2004).
    [23] K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, G. Wylangowski. Pulsed laser deposition of Ga-La-S chalcogenide glass thin film optical waveguides. Appl. Phys. Lett., 63, 1601(1993).
    [24] B. Eggleton, B. L. Davies, K. Richardson. Chalcogenide photonics. Nat. Photon., 5, 141(2011).
    [25] W. Shen, P. Zeng, Z. Yang, D. Xia, J. Du, B. Zhang, K. Xu, Z. He, Z. Li. Chalcogenide glass photonic integration for improved 2 µm optical interconnection. Photon. Res., 8, 1484(2020).
    [26] R. V. Schmidt, I. P. Kaminow. Metal-diffused optical waveguides in LiNbO3. Appl. Phys. Lett., 25, 458(1974).
    [27] C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, M. Lončar. Integrated high quality factor lithium niobate microdisk resonators. Opt. Express, 22, 30924(2014).
    [28] I. Krasnokutska, J. Tambasco, X. Li, A. Peruzzo. Ultra-low loss photonic circuits in lithium niobate on insulator. Opt. Express, 26, 897(2018).
    [29] R. Wu, M. Wang, J. Xu, J. Qi, W. Chu, Z. Fang, J. Zhang, J. Zhou, L. Qiao, Z. Chai, J. Lin, Y. Cheng. Long low-loss-lithium niobate on insulator waveguides with sub-nanometer surface roughness. Nano Mater., 8, 910(2018).
    [30] W. Jin, K. Chiang. Mode switch based on electro-optic long-period waveguide grating in lithium niobate. Opt. Lett., 40, 237(2015).
    [31] J. Tol, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, H. Ambrosius, M. Smit. Photonic integration in indium-phosphide membranes on silicon (IMOS). Proc. SPIE, 8988, 89880M(2014).
    [32] Y. Jiao, J. Pello, A. Mejia, L. Shen, B. Smalbrugge, E. Geluk, M. Smit, J. Tol. Fullerene-assisted electron-beam lithography for pattern improvement and loss reduction in InP membrane waveguide devices. Opt. Lett., 39, 1645(2014).
    [33] T. Tanemura, T. Amemiya, K. Takeda, A. Higo, Y. Nakano. Simple and compact INP polarization converter for polarization-multiplexed photonic integrated circuits. IEEE LEOS Annual Meeting Conference(2009).
    [34] F. Guo, D. Lu, R. Zhang, H. Wang, C. Ji. A two-mode (de)multiplexer based on multimode interferometer coupler and Y-junction on InP substrate. IEEE Photon. J., 8, 2700608(2016).
    [35] A. M. J. Koonen, H. Chen, H. P. A. van den Boom, O. Raz. Silicon photonic integrated mode multiplexer and demultiplexer. IEEE Photon. Technol. Lett., 24, 1961(2012).
    [36] Y. Tong, W. Zhou, X. Wu, H. K. Tsang. “Efficient mode multiplexer for few-mode fibers using integrated silicon-on-insulator waveguide grating coupler. EEE J. Quantum Electron., 56, 8400107(2020).
    [37] W. Shen, J. Du, J. Xiong, L. Ma, Z. He. Silicon-integrated dual-mode fiber-to-chip edge coupler for 2 × 100 Gbps/lambda MDM optical interconnection. Opt. Express, 28, 33254(2020).
    [38] Y. Lai, Y. Yu, S. Fu, J. Xu, P. P. Shum, X. Zhang. Compact double-part grating coupler for higher-order mode coupling. Opt. Lett., 43, 3172(2018).
    [39] I. Demirtzioglou, C. Lacava, A. Shakoor, A. Khokhar, Y. Jung, D. J. Thomson, P. Petropoulos. Apodized silicon photonic grating couplers for mode-order conversion. Photon. Res., 7, 1036(2019).
    [40] M. Zhang, H. Liu, B. Wang, G. Li, L. Zhang. Efficient grating couplers for space division multiplexing applications. IEEE J. Sel. Top. Quantum Electron., 24, 8200605(2018).
    [41] H. Chen, V. Sleiffer, B. Snyder, M. Kuschnerov, R. van Uden, Y. Jung, C. Okonkwo, O. Raz, P. O’Brien, H. de Waardt, T. Koonen. Demonstration of a photonic integrated mode coupler with 3.072 Tb/s MDM and WDM transmission over few-mode fiber. 18th OptoElectronics and Communications Conference & 2013 International Conference on Photonics in Switching(2013).
    [42] Y. Ding, K. Yvind. Efficient silicon PIC mode multiplexer using grating coupler array with aluminum mirror for few-mode fiber. Conference on Lasers and Electro-Optics (CLEO)(2015).
    [43] J. M. Baumann, E. Porto da Silva, Y. Ding, K. Dalgaard, L. H. Frandsen, L. K. Oxenløwe, T. Morioka. Silicon chip-to-chip mode-division multiplexing. Optical Fiber Communications Conference and Exposition (OFC)(2018).
    [44] R. Ryf, N. K. Fontaine, R. Essiambre. Spot-based mode couplers for mode-multiplexed transmission in few-mode fiber. IEEE Photon. Technol. Lett., 24, 1973(2012).
    [45] Y. Lai, Y. Yu, S. Fu, J. Xu, P. P. Shum, X. Zhang. Efficient spot size converter for higher-order mode fiber-chip coupling. Opt. Lett., 42, 3702(2017).
    [46] Z. Li, Y. Lai, Y. Yu, X. Zhang. Reconfigurable fiber-chip mode converter with efficient multi-mode coupling function. IEEE Photon. Technol. Lett., 32, 371(2020).
    [47] D. Dai, M. Mao. Mode converter based on an inverse taper for multimode silicon nanophotonic integrated circuits. Opt. Express, 23, 28376(2015).
    [48] Y. Wu, K. S. Chiang. Ultra-broadband mode multiplexers based on three-dimensional asymmetric waveguide branches. Opt. Lett., 42, 407(2017).
    [49] X. Jiang, H. Wu, D. Dai. Low-loss and low-crosstalk multimode waveguide bend on silicon. Opt. Express, 26, 17680(2018).
    [50] Y. Wang, D. Dai. Ultra-sharp multimode waveguide bends with dual polarizations. J. Lightwave Technol., 38, 3994(2020).
    [51] H. Xie, Y. Liu, W. Li, J. Du, Y. Yao, Q. Song, K. Xu. Demonstration of an ultra-compact bend for four modes based on pixelated meta-structure. Optical Fiber Communication Conference (OFC)(2020).
    [52] X. Wu, W. Zhou, D. Huang, Z. Zhang, Y. Wang, J. Bowers, H. K. Tsang. Low crosstalk bent multimode waveguide for on-chip mode-division multiplexing interconnects. Conference on Lasers and Electro-Optics(2018).
    [53] H. Xu, Y. Shi. Ultra-sharp multi-mode waveguide bending assisted with metamaterial-based mode converters. Laser Photon. Rev., 12, 1700240(2018).
    [54] C. Sun, Y. Yu, G. Chen, X. Zhang. Ultra-compact bent multimode silicon waveguide with ultralow inter-mode crosstalk. Opt. Lett., 42, 3004(2017).
    [55] H. Xie, Y. Liu, Z. Chu, K. Xu, J. Du, Q. Song. Ultra-compact dual-mode waveguide bend based on an inverse design. The International Photonics and Optoelectronics Meeting (POEM)(2018).
    [56] C. Sun, Y. Ding, Z. Li, W. Qi, Y. Yu, X. Zhang. Key multimode silicon photonic devices inspired by geometrical optics. ACS Photon., 7, 2037(2020).
    [57] H. Xu, Y. Shi. Dual-mode waveguide crossing utilizing taper-assisted multimode-interference couplers. Opt. Lett., 41, 5381(2016).
    [58] B. Wu, Y. Yu, X. Zhang. Multimode waveguide crossing with ultralow loss and low imbalance. Opt. Express, 28, 14705(2020).
    [59] C. Sun, Y. Yu, X. Zhang. Ultra-compact waveguide crossing for a mode-division multiplexing optical network. Opt. Lett., 42, 4913(2017).
    [60] W. Chang, L. Lu, X. Ren, L. Lu, M. Cheng, D. Liu, M. Zhang. An ultracompact multimode waveguide crossing based on subwavelength asymmetric Y-junction. IEEE Photon. J., 10, 4501008(2018).
    [61] W. Chang, L. Lu, X. Ren, D. Li, Z. Pan, M. Cheng, D. Liu, M. Zhang. Ultracompact dual-mode waveguide crossing based on subwavelength multimode-interference couplers. Photon. Res., 6, 660(2018).
    [62] H. Xu, Y. Shi. Metamaterial-based Maxwell’s fisheye lens for multimode waveguide crossing. Laser Photon. Rev., 12, 1800094(2018).
    [63] H. Xu, Y. Shi. Ultra-broadband dual-mode 3 dB power splitter based on a Y-junction assisted with mode converters. Opt. Lett., 41, 5047(2016).
    [64] Y. Luo, Y. Yu, M. Ye, C. Sun, X. Zhang. Integrated dual-mode 3 dB power coupler based on tapered directional coupler. Sci. Rep., 6, 23516(2016).
    [65] L. Han, B. P.-P. Kuo, N. Alic, S. Radic. Ultra-broadband multimode 3 dB optical power splitter using an adiabatic coupler and a Y-branch. Opt. Express, 26, 14800(2018).
    [66] W. Chang, X. Ren, Y. Ao, L. Lu, M. Cheng, L. Deng, D. Liu, M. Zhang. Inverse design and demonstration of an ultracompact broadband dual-mode 3 dB power splitter. Opt. Express, 26, 24135(2018).
    [67] H. Xie, Y. Liu, Y. Wang, Y. Wang, Y. Yao, Q. Song, J. Du, Z. He, K. Xu. An ultra-compact 3-dB power splitter for three modes based on pixelated meta-structure. IEEE Photon. Technol. Lett., 32, 341(2020).
    [68] Y. Li, C. Li, C. Li, B. Cheng, C. Xue. Compact two-mode (de)multiplexer based on symmetric Y-junction and multimode interference waveguides. Opt. Express, 22, 5781(2014).
    [69] Z. Wang, C. Yao, Y. Zhang, Y. Su. Ultra-compact and broadband silicon two-mode multiplexer based on asymmetric shallow etching on a multi-mode interferometer. Optical Fiber Communications Conference and Exhibition (OFC)(2020).
    [70] Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, C. Peucheret. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Opt. Express, 21, 10376(2013).
    [71] U. D. Dave, M. Lipson. Efficient conversion to very high order modes in silicon waveguides. Conference on Lasers and Electro-Optics(2019).
    [72] Y. Sun, Y. Xiong, W. N. Ye. Experimental demonstration of a two-mode (de)multiplexer based on a taper-etched directional coupler. Opt. Lett., 41, 3743(2016).
    [73] J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, R. M. Osgood. Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing. Opt. Lett., 38, 1854(2013).
    [74] W. Chen, P. Wang, T. Yang, G. Wang, T. Dai, Y. Zhang, L. Zhou, X. Jiang, J. Yang. Silicon three-mode (de)multiplexer based on cascaded asymmetric Y junctions. Opt. Lett., 41, 2851(2016).
    [75] C. Sun, Y. Yu, M. Ye, G. Chen, X. Zhang. An ultra-low crosstalk and broadband two-mode (de)multiplexer based on adiabatic couplers. Sci. Rep., 6, 38494(2016).
    [76] Z. Zhang, Y. Yu, S. Fu. Broadband on-chip mode-division multiplexer based on adiabatic couplers and symmetric Y-junction. IEEE Photon. J., 9, 6600406(2017).
    [77] L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, M. Lipson. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun., 5, 3069(2014).
    [78] M. Ye, Y. Yu, G. Chen, Y. Luo, X. Zhang. On-chip WDM mode-division multiplexing interconnection with optional demodulation function. Opt. Express, 23, 32130(2015).
    [79] H. Jia, X. Fu, T. Zhou, L. Zhang, S. Yang, L. Yang. Mode-selective modulation by silicon microring resonators and mode multiplexers for on-chip optical interconnect. Opt. Express, 27, 2915(2019).
    [80] H. Xiao, Z. Zhang, J. Yang, X. Han, W. Chen, G. Ren, A. Mitchell, J. Yang, D. Gao, Y. Tian. On-chip scalable mode-selective converter based on asymmetrical micro-racetrack resonators. Nanophotonics, 9, 1447(2020).
    [81] H. Qiu, H. Yu, T. Hu, G. Jiang, H. Shao, P. Yu, J. Yang, X. Jiang. Silicon mode multi/demultiplexer based on multimode grating-assisted couplers. Opt. Express, 21, 17904(2013).
    [82] C. Gui, Y. Gao, Z. Zhang, J. Wang. On-chip silicon two-mode (de)multiplexer for OFDM/OQAM data transmission based on grating-assisted coupler. IEEE Photon. J., 7, 7905807(2015).
    [83] Y. He, Y. Zhang, H. Wang, L. Sun, Y. Su. Design and experimental demonstration of a silicon multi-dimensional (de)multiplexer for wavelength-, mode- and polarization-division (de)multiplexing. Opt. Lett., 45, 2846(2020).
    [84] L. F. Frellsen, Y. Ding, O. Sigmund, L. H. Frandsen. Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides. Opt. Express, 24, 16866(2016).
    [85] W. Chang, L. Lu, X. Ren, D. Li, Z. Pan, M. Cheng, D. Liu, M. Zhang. Ultra-compact mode (de)multiplexer based on subwavelength asymmetric Y-junction. Opt. Express, 26, 8162(2018).
    [86] H. Xie, Y. Liu, S. Wang, Y. Wang, Y. Yao, Q. song, J. Du, Z. He, K. Xu. Highly compact and efficient four-mode multiplexer based on pixelated waveguides. IEEE Photon. Technol. Lett., 32, 166(2020).
    [87] H. Xiao, Z. Liu, X. Han, J. Yang, G. Ren, A. Mitchell, Y. Tian. On-chip reconfigurable and scalable optical mode multiplexer/demultiplexer based on three-waveguide-coupling structure. Opt. Express, 26, 22366(2018).
    [88] W. Jiang, F. Cheng, J. Xu, H. Wan. Compact and low-crosstalk mode (de)multiplexer using a triple plasmonic-dielectric waveguide-based directional coupler. J. Opt. Soc. Am. B, 35, 2532(2018).
    [89] W. Jiang. Nonvolatile and ultra-low-loss reconfigurable mode (de)multiplexer/switch using triple-waveguide coupler with Ge2Sb2Se4Te1 phase change material. Sci. Rep., 8, 15946(2018).
    [90] N. Riesen, J. D. Love. Design of mode-sorting asymmetric Y-junctions. Appl. Opt., 51, 2778(2012).
    [91] Y. Liu, K. Xu, S. Wang, W. Shen, H. Xie, Y. Wang, S. Xiao, Y. Yao, J. Du, Z. He, Q. Song. Arbitrarily routed mode-division multiplexed photonic circuits for dense integration. Nat. Commun., 10, 3263(2019).
    [92] D. Chen, X. Xiao, L. Wang, Y. Yu, W. Liu, Q. Yang. Low-loss and fabrication tolerant silicon mode-order converters based on novel compact tapers. Opt. Express, 23, 11152(2015).
    [93] Y. Zhao, X. Guo, K. Wang, H. Wang, Y. Su. Ultra-compact silicon TE-polarized mode converters combining a directional coupler and a phase shifter. Asia Communications and Photonics Conference (ACPC)(2019).
    [94] J. Xiang, Z. Tao, X. Guo, Y. Zhang, Y. Zhao, Y. Su. Universal programmable on-chip metasurface building blocks for arbitrary high-order mode manipulation(2020).
    [95] T. Wang, H. Guo, H. Chen, J. Yang, H. Jia. Ultra-compact reflective mode converter based on a silicon subwavelength structure. Appl. Opt., 59, 2754(2020).
    [96] H. Jia, H. Chen, T. Wang, H. Xiao, G. Ren, A. Mitchell, J. Yang, Y. Tian. Multi-channel parallel silicon mode-order converter for multimode on-chip optical switching. IEEE J. Sel. Top. Quantum Electron., 26, 8302106(2020).
    [97] H. Jia, T. Zhou, X. Fu, J. Ding, L. Yang. Inverse-design and demonstration of ultracompact silicon meta-structure mode exchange device. ACS Photon., 5, 1833(2018).
    [98] X. Han, H. Xiao, Z. Liu, T. Zhao, H. Jia, J. Yang, B. J. Eggleton, Y. Tian. Reconfigurable on-chip mode exchange for mode-division multiplexing optical networks. J. Lightwave Technol., 37, 1008(2019).
    [99] J. Guo, C. Ye, C. Liu, M. Zhang, C. Li, J. Li, D. Dai. Ultra-compact and ultra-broadband guided-mode exchangers on silicon. Laser Photon. Rev., 14, 2000058(2020).
    [100] X. Guan, Y. Ding, L. H. Frandsen. Ultra-compact broadband higher order-mode pass filter fabricated in a silicon waveguide for multimode photonics. Opt. Lett., 40, 3893(2015).
    [101] C. Sun, W. Wu, Y. Yu, X. Zhang, G. T. Reed. Integrated tunable mode filter for a mode-division multiplexing system. Opt. Lett., 43, 3658(2018).
    [102] D. Dai. Silicon polarization beam splitter based on an asymmetrical evanescent coupling system with three optical waveguides. J. Lightwave Technol., 30, 3281(2012).
    [103] H. Qiu, J. Jiang, P. Yu, J. Yang, H. Yu, X. Jiang. Broad bandwidth and large fabrication tolerance polarization beam splitter based on multimode anti-symmetric Bragg sidewall gratings. Opt. Lett., 42, 3912(2017).
    [104] H. Qiu, J. Jiang, P. Yu, T. Dai, J. Yang, H. Yu, X. Jiang. Silicon band-rejection and band-pass filter based on asymmetric Bragg sidewall gratings in a multimode waveguide. Opt. Lett., 41, 2450(2016).
    [105] J. Jiang, H. Qiu, G. Wang, Y. Li, T. Dai, D. Mu, H. Yu, J. Yang, X. Jiang. Silicon lateral-apodized add–drop filter for on-chip optical interconnection. Appl. Opt., 56, 8425(2017).
    [106] H. Qiu, J. Jiang, T. Hu, P. Yu, J. Yang, X. Jiang, H. Yu. Silicon add-drop filter based on multimode Bragg sidewall gratings and adiabatic couplers. J. Lightwave Technol., 35, 1705(2017).
    [107] J. Jiang, H. Qiu, G. Wang, Y. Li, T. Dai, X. Wang, H. Yu, J. Yang, X. Jiang. Broadband tunable filter based on the loop of multimode Bragg grating. Opt. Express, 26, 559(2018).
    [108] H. Xu, Y. Shi. Ultra-compact and highly efficient polarization rotator utilizing multi-mode waveguides. Opt. Lett., 42, 771(2017).
    [109] H. Xu, Y. Shi. Ultra-broadband silicon polarization splitter-rotator based on the multi-mode waveguide. Opt. Express, 25, 18485(2017).
    [110] C. Sun, Y. Yu, Y. Ding, Z. Li, W. Qi, X. Zhang. Integrated mode-transparent polarization beam splitter supporting thirteen data channels. Photon. Res., 8, 978(2020).
    [111] G. Zhou, L. Zhou, Y. Guo, S. Chen, Z. Fu, L. Lu, J. Chen. High-speed silicon electro-optic modulator based on a single multimode waveguide. Optical Fiber Communication Conference(2019).
    [112] S. Miller, Y. Chang, C. Phare, M. Shin, M. Zadka, S. Roberts, B. Stern, X. Ji, A. Mohanty, O. Jimenez Gordillo, U. Dave, M. Lipson. Large-scale optical phased array using a low-power multi-pass silicon photonic platform. Optica, 7, 3(2020).
    [113] M. Ye, Y. Yu, C. Sun, X. Zhang. On-chip data exchange for mode division multiplexed signals. Opt. Express, 24, 528(2016).
    [114] C. Sun, Y. Yu, G. Chen, X. Zhang. Integrated switchable mode exchange for reconfigurable mode-multiplexing optical networks. Opt. Lett., 41, 3257(2016).
    [115] C. Sun, Y. Yu, G. Chen, X. Zhang. On-chip switch for reconfigurable mode-multiplexing optical network. Opt. Express, 24, 21722(2016).
    [116] Y. Xiong, R. B. Priti, O. Liboiron-Ladouceur. High-speed two-mode switch for mode-division multiplexing optical networks. Optica, 4, 1098(2017).
    [117] H. Jia, S. Yang, T. Zhou, L. Zhang, T. Wang, H. Chen, J. Yang, L. Yang. Mode-oriented permutation cipher encryption and passive signal switching based on multiobjective optimized silicon subwavelength metastructures. ACS Photon., 7, 2163(2020).
    [118] L. Lu, D. Liu, M. Yan, M. Zhang. Subwavelength adiabatic multimode Y-junctions. Opt. Lett., 44, 4729(2019).
    [119] S. A. Miller, Y.-C. Chang, C. T. Phare, M. C. Shin, M. Zadka, S. P. Roberts, B. Stern, X. Ji, A. Mohanty, O. A. J. Gordillo, U. D. Dave, M. Lipson. Large-scale optical phased array using a low-power multi-pass silicon photonic platform. Optica, 7, 3(2020).
    [120] D. Dai, J. E. Bowers. Silicon-based on-chip multiplexing technologies and devices for peta-bit optical interconnects. Nanophotonics, 3, 283(2014).
    [121] H. Jia, S. Yang, T. Zhou, S. Shao, X. Fu, L. Zhang, L. Yang. WDM-compatible multimode optical switching system-on-chip. Nanophotonics, 8, 889(2019).
    [122] B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergman, M. Lipson. On-chip mode-division multiplexing switch. Optica, 2, 530(2015).
    [123] H. Jia, T. Zhou, L. Zhang, J. Ding, X. Fu, L. Yang. Optical switch compatible with wavelength division multiplexing and mode division multiplexing for photonic networks-on-chip. Opt. Express, 25, 20698(2017).
    [124] Y. Zhang, Q. Zhu, Y. He, C. Qiu, Y. Su, R. Soref. Silicon 1 × 2 mode- and polarization-selective switch. Optical Fiber Communication Conference(2017).
    [125] L. Yang, T. Zhou, H. Jia, S. Yang, J. Ding, X. Fu, L. Zhang. General architectures for on-chip optical space and mode switching. Optica, 5, 180(2018).
    [126] C. Sun, W. Wu, Y. Yu, G. Chen, X. Zhang, X. Chen, D. J. Thomson, G. T. Reed. De-multiplexing free on-chip low-loss multimode switch enabling reconfigurable inter-mode and inter-path routing. Nanophotonics, 7, 1571(2018).
    [127] D. Zhou, C. Sun, Y. Lai, Y. Yu, X. Zhang. Integrated silicon multifunctional mode-division multiplexing system. Opt. Express, 27, 10798(2019).
    [128] S. Wang, H. Wu, H. K. Tsang, D. Dai. Monolithically integrated reconfigurable add-drop multiplexer for mode-division-multiplexing systems. Opt. Lett., 41, 5298(2016).
    [129] S. Wang, X. Feng, S. Gao, Y. Shi, T. Dai, H. Yu, H.-K. Tsang, D. Dai. On-chip reconfigurable optical add-drop multiplexer for hybrid wavelength/mode-division-multiplexing systems. Opt. Lett., 42, 2802(2017).
    [130] L. Han, B. P. Kuo, N. Alic, S. Radic. Silicon photonic wavelength and mode selective switch for WDM-MDM networks. Optical Fiber Communications Conference and Exhibition (OFC)(2019).
    [131] R. Maruyama, N. Kuwaki, S. Matsuo, M. Ohashi. Experimental investigation of relation between mode-coupling and fiber characteristics in few-mode fibers. Optical Fiber Communication Conference(2015).
    [132] P. Sillard, M. Bigot-Astruc, D. Boivin, H. Maerten, L. Provost. Few-mode fiber for uncoupled mode-division multiplexing transmissions. 37th European Conference and Exposition on Optical Communications(2011).
    [133] M. Bigot-Astruc, D. Boivin, P. Sillard. Design and fabrication of weakly-coupled few-modes fibers. IEEE Photonics Society Summer Topical Meeting Series(2012).
    [134] M. Bigot, D. Molin, K. de Jongh, D. Van Ras, F. Achten, P. Sillard. Next-generation multimode fibers for space division multiplexing. Advanced Photonics(2017).
    [135] S. Jiang, L. Ma, Z. Zhang, X. Xu, S. Wang, J. Du, C. Yang, W. Tong, Z. He. Design and characterization of ring-assisted few-mode fibers for weakly coupled mode-division multiplexing transmission. J. Lightwave Technol., 36, 5547(2018).
    [136] L. Ma, S. Jiang, J. Du, C. Yang, W. Tong, Z. He. Ring-assisted 7-LP-mode fiber with ultra-low inter-mode crosstalk. Asia Communications and Photonics Conference(2016).
    [137] K. Sato, R. Maruyama, N. Kuwaki, S. Matsuo, M. Ohashi. Optimized graded index two-mode optical fiber with low DMD, large Aeff and low bending loss. Opt. Express, 21, 16231(2013).
    [138] P. Sillard, D. Molin, M. Bigot-Astruc, K. De Jongh, F. Achten, A. M. Velázquez-Benítez, R. Amezcua-Correa, C. M. Okonkwo. Low-differential-mode-group-delay 9-LP-mode fiber. J. Lightwave Technol., 34, 425(2016).
    [139] Y. Kim, H. E. Engan, H. J. Shaw, J. N. Blake. Fiber-optic modal coupler using periodic microbending. Opt. Lett., 11, 389(1986).
    [140] J. N. Blake, B. Y. Kim, H. J. Shaw. Highly selective evanescent modal filter for two-mode optical fibers. Opt. Lett., 11, 177(1986).
    [141] J. Liang, Q. Mo, S. Fu, M. Tang, P. Shum, D. Liu. Design and fabrication of elliptical-core few-mode fiber for MIMO-less data transmission. Opt. Lett., 41, 3058(2016).
    [142] L. Wang, S. LaRochelle. Design of eight-mode polarization-maintaining few-mode fiber for multiple-input multiple-output-free spatial division multiplexing. Opt. Lett., 40, 5846(2015).
    [143] C. Xia, N. Bai, I. Ozdur, X. Zhou, G. Li. Supermodes for optical transmission. Opt. Express, 19, 16653(2011).
    [144] H. Xiao, H. Li, G. Ren, Y. Dong, S. Xiao, J. Liu, B. Wei, S. Jian. Polarization-maintaining supermode fiber supporting 20 modes. IEEE Photon. Technol. Lett., 29, 1340(2017).
    [145] Z. He, J. Du, W. Shen, Y. Huang, C. Wang, K. Xu, Z. He. Inverse design of few-mode fiber by neural network for weak-coupling optimization. Optical Fiber Communication Conference(2020).
    [146] G. Stepniak, L. Maksymiuk, J. Siuzdak. Increasing multimode fiber transmission capacity by mode selective spatial light phase modulation. 36th European Conference and Exhibition on Optical Communication(2010).
    [147] L. Zhu, X. Wei, J. Wang, Z. Zhang, Z. Li, H. Zhang, S. Li, K. Wang, J. Liu. Experimental demonstration of basic functionalities for 0.1-THz orbital angular momentum (OAM) communications. Optical Fiber Communication Conference(2014).
    [148] J. Li. A study on key technologies for mode division multiplexed optical transmission systems(2019).
    [149] K. Y. Song, I. K. Hwang, S. H. Yun, B. Y. Kim. High performance fused-type mode-selective coupler using elliptical core two-mode fiber at 1550 nm. IEEE Photon. Technol. Lett., 14, 501(2002).
    [150] S. Savin, M. J. F. Digonnet, G. S. Kino, H. J. Shaw. Tunable mechanically induced long-period fiber gratings. Opt. Lett., 25, 710(2000).
    [151] S. G. Leon-Saval, N. K. Fontaine, R. Amezcua-Correa. Photonic lantern as mode multiplexer for multimode optical communications. Opt. Fiber Tech., 35, 46(2017).
    [152] N. K. Fontaine, R. Ryf, J. Bland-Hawthorn, S. G. Leon-Saval. Geometric requirements for photonic lanterns in space division multiplexing. Opt. Express, 20, 27123(2012).
    [153] Y. Jung, S. Alam, Z. Li, A. Dhar, D. Giles, I. P. Giles, J. K. Sahu, F. Poletti, L. Grüner-Nielsen, D. J. Richardson. First demonstration and detailed characterization of a multimode amplifier for space division multiplexed transmission systems. Opt. Express, 19, B952(2011).
    [154] G. L. Cocq, L. Bigot, A. L. Rouge, M. Bigot-Astruc, P. Sillard, C. Koebele, M. Salsi, Y. Quiquempois. Modeling and characterization of a few-mode EDFA supporting four mode groups for mode division multiplexing. Opt. Express, 20, 27051(2012).
    [155] Q. Kang, E. Lim, Y. Jung, F. Poletti, S. Alam, D. J. Richardson. Design of four-mode erbium doped fiber amplifier with low differential modal gain for modal division multiplexed transmissions. Optical Fiber Communication Conference(2013).
    [156] Y. Wakayama, K. Igarashi, D. Soma, H. Taga, T. Tsuritani. Novel 6-mode fibre amplifier with large erbium-doped area for differential modal gain minimization. 42nd European Conference on Optical Communication(2016).
    [157] A. Gaur, G. Kumar, V. Rastogi. Dual-core few mode EDFA for amplification of 20 modes. Opt. Quantum Electron., 50, 66(2018).
    [158] L. Bigot, J. Trinel, G. Bouwmans, E. R. Andresen, Y. Quiquempois. Few-mode and multicore fiber amplifiers technology for SDM. Optical Fiber Communication Conference(2018).
    [159] G. Khanna, T. Rahman, E. D. Man, E. Riccardi, A. Pagano, A. C. Piat, S. Calabrò, B. Spinnler, D. Rafique, U. Feiste. Single-carrier 400G 64QAM and 128QAM DWDM field trial transmission over metro legacy links. IEEE Photon. Tech. Lett., 29, 189(2017).
    [160] S. Namiki, Y. Emori. Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes. IEEE J. Sel. Top. Quantum. Electron., 7, 3(2001).
    [161] R. Ryf, A. Sierra, R.-J. Essiambre, S. Randel, A. H. Gnauck, C. Bolle, M. Esmaeelpour, P. J. Winzer, R. Delbue, P. Pupalaikise, A. Sureka, D. W. Peckham, A. McCurdy, R. Linglein. Mode-equalized distributed Raman amplification in 137-km few-mode fiber. European Conference and Exhibition on Optical Communication(2011).
    [162] M. Esmaeelpour, R. Ryf, N. K. Fontaine, H. Chen, A. H. Gnauck, R. Essiambre, J. Toulouse, Y. Sun, R. Lingle. Transmission over 1050-km few-mode fiber based on bidirectional distributed Raman amplification. J. Lightwave Technol., 34, 1864(2016).
    [163] J. Li, L. Wang, J. Du, S. Jiang, L. Ma, C. Cai, L. Zhu, A. Wang, M.-J. Li, H. Chen, J. Wang, Z. He. Experimental demonstration of a few-mode Raman amplifier with a flat gain covering 1530–1605 nm. Opt. Lett., 43, 4530(2018).
    [164] J. Li, J. Du, L. Ma, M.-J. Li, K. Xu, Z. He. Second-order few-mode Raman amplifier for mode-division multiplexed optical communication systems. Opt. Express, 25, 810(2017).
    [165] J. Li, C. Cai, J. Du, S. Jiang, Z. He. Ultra-low-noise mode-division multiplexed WDM transmission over 100-km FMF based on a second-order few-mode Raman amplifier. J. Lightwave Technol., 36, 3254(2018).
    [166] J. D. Ania-Castañón. Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings. Opt. Express, 12, 4372(2004).
    [167] M. Tan, P. Rosa, S. T. Le, V. V. Dvoyrin, M. A. Iqbal, S. Sugavanam, S. K. Turitsyn, P. Harper. RIN mitigation and transmission performance enhancement with forward broad band pump. IEEE Photon. Technol. Lett., 30, 254(2018).
    [168] Y. Chen, J. Du, J. Li, L. Shen, J. Luo, Z. He. Time-wavelength-mode equalization by PSO for random fiber laser based FMF Raman amplifier. Optical Fiber Communication Conference(2020).
    [169] Y. Chen, J. Du, Y. Huang, K. Xu, Z. He. Intelligent gain flattening of FMF Raman amplification by machine learning based inverse design. Optical Fiber Communication Conference(2020).
    [170] Y. Chen, J. Du, Y. Huang, K. Xu, Z. He. Intelligent gain flattening in wavelength and space domain for FMF Raman amplification by machine learning based inverse design. Opt. Express, 28, 11911(2020).
    [171] S. Berdagué, P. Facq. Mode division multiplexing in optical fibers. Appl. Opt., 21, 1950(1982).
    [172] E. Ip, N. Bai, Y. K. Huang, E. Mateo, F. Yaman, M. J. Li, S. Bickham, S. Ten, J. Liñares, C. Montero, V. Moreno, X. Prieto, V. Tse, K. M. Chung, A. Lau, H. Y. Tam, C. Lu, Y. Luo, G. D. Peng, G. Li. 88 × 3 × 112-Gb/s WDM transmission over 50 km of three-mode fiber with inline few mode fiber amplifier. 37th European Conference and Exposition on Optical Communications(2011).
    [173] R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, R. Lingle. Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 ×6 MIMO processing. J. Lightwave Technol., 30, 521(2012).
    [174] G. Rademacher, S. Randel, R. Ryf, R. Ryf, N. K. Fontaine, A. H. Gnauck, H. Chen, M. A. Mestre, R. J. Essiambre, C. Schmidt, B. J. Puttnam, R.-J. Essiambre, R. S. Luís, P. J. Winzer, Y. Awaji, R. Delbue, P. Pupalaikis, N. Wada, A. Sureka, S. Gross, Y. Sun, N. Riesen, M. Withford, X. Jiang, R. Lingle, Y. Sun, R. Lingle. Long-haul transmission over few-mode fibers with space-division multiplexing. J. Lightwave Technol., 36, 1382(2018).
         Mode-multiplexed 6×20-GBd QPSK transmission over 1200-km DGD-compensated few-mode fiber. National Fiber Optic Engineers Conference(2012).
    [175] D. Soma, K. Igarashi, Y. Wakayama, K. Takeshima, Y. Kawaguchi, N. Yoshikane, T. Tsuritani, I. Morita, M. Suzuki. 2.05 peta-bit/s super-Nyquist-WDM SDM transmission using 9.8-km 6-mode 19-core fiber in full C band. European Conference on Optical Communication(2015).
    [176] R. Ryf, H. Chen, N. K. Fontaine, A. M. Velazquez-Benitez, J. Antonio-Lopez, J. C. Alvarado, Z. Sanjabi Eznaveh, C. Jin, B. Huang, S. H. Chang, B. Ercan, C. Gonnet, M. Bigot-Astruc, D. Molin, F. Achten, P. Sillard, R. Amezcua-Correa. 10-mode mode-multiplexed transmission with inline amplification. 42nd European Conference on Optical Communication(2016).
    [177] D. Soma, Y. Wakayama, S. Beppu, S. Sumita, T. Tsuritani, T. Hayashi, T. Nagashima, M. Suzuki, H. Takahashi, K. Igarashi, I. Morita, M. Suzuki. 10.16 peta-bit/s dense SDM/WDM transmission over low-DMD 6-mode 19-core fibre across C+L band. European Conference on Optical Communication (ECOC)(2017).
    [179] G. Rademacher, R. S. Luís, B. J. Puttnam, T. A. Eriksson, R. Ryf, E. Agrell, R. Maruyama, K. Aikawa, Y. Awaji, H. Furukawa, N. Wada. High-capacity transmission with few-mode fibers. J. Lightwave Technol., 37, 425(2019).
    [180] K. Shibahara, T. Mizuno, D. Lee, Y. Miyamoto, H. Ono, K. Nakajima, Y. Amma, K. Takenaga, K. Saitoh. DMD-unmanaged long-haul SDM transmission over 2500-km 12-core × 3-mode MC-FMF and 6300-km 3-mode FMF employing intermodal interference canceling technique. J. Lightwave Technol., 37, 138(2019).
    [181] K. Shibahara, T. Mizuno, H. Ono, K. Nakajima, Y. Miyamoto. Long-haul DMD-unmanaged 6-mode-multiplexed transmission employing cyclic mode-group permutation. Optical Fiber Communication Conference(2020).

    CLP Journals

    [1] Shaokang Bai, Yaqiong Lu, Zuxing Zhang. Mode field switching in narrow linewidth mode-locked fiber laser[J]. Chinese Optics Letters, 2022, 20(2): 020602

    Copy Citation Text
    Jiangbing Du, Weihong Shen, Jiacheng Liu, Yufeng Chen, Xinyi Chen, Zuyuan He. Mode division multiplexing: from photonic integration to optical fiber transmission [Invited][J]. Chinese Optics Letters, 2021, 19(9): 091301
    Download Citation
    Category: Integrated Optics
    Received: Dec. 29, 2020
    Accepted: Feb. 26, 2021
    Published Online: Aug. 26, 2021
    The Author Email: Jiangbing Du (dujiangbing@sjtu.edu.cn), Zuyuan He (zuyuanhe@sjtu.edu.cn)