• Photonics Research
  • Vol. 11, Issue 10, 1751 (2023)
A. Bartolo1,2, N. Vigne2, M. Marconi1, G. Beaudoin3..., L. Le Gratiet3, K. Pantzas3, I. Sagnes3, A. Garnache2 and M. Giudici1,*|Show fewer author(s)
Author Affiliations
  • 1Université Côte d’Azur, CNRS, Institut de Physique de Nice, 06200 Nice, France
  • 2Institut d’Electronique et des Systèmes, CNRS UMR5214, 34000 Montpellier, France
  • 3Centre de Nanosciences et de Nanotechnologies, CNRS UMR 9001, Université Paris-Saclay, 91120 Palaiseau, France
  • show less
    DOI: 10.1364/PRJ.495892 Cite this Article Set citation alerts
    A. Bartolo, N. Vigne, M. Marconi, G. Beaudoin, L. Le Gratiet, K. Pantzas, I. Sagnes, A. Garnache, M. Giudici, "Spatiotemporally reconfigurable light in degenerate laser cavities," Photonics Res. 11, 1751 (2023) Copy Citation Text show less
    References

    [1] A. Forbes, M. de Oliveira, M. Dennis. Structured light. Nat. Photonics, 15, 253-262(2021).

    [2] M. Piccardo, V. Ginis, A. Forbes, S. Mahler, A. A. Friesem, N. Davidson, H. Ren, A. H. Dorrah, F. Capasso, F. T. Dullo, B. S. Ahluwalia, A. Ambrosio, S. Gigan, N. Treps, M. Hiekkamäki, R. Fickler, M. Kues, D. Moss, R. Morandotti, J. Riemensberger, T. J. Kippenberg, J. Faist, G. Scalari, N. Picqué, T. W. Hänsch, G. Cerullo, C. Manzoni, L. A. Lugiato, M. Brambilla, L. Columbo, A. Gatti, F. Prati, A. Shiri, A. F. Abouraddy, A. Alù, E. Galiffi, J. B. Pendry, P. A. Huidobro. Roadmap on multimode light shaping. J. Opt., 24, 013001(2022).

    [3] L. G. Wright, W. H. Renninger, D. N. Christodoulides, F. W. Wise. Nonlinear multimode photonics: nonlinear optics with many degrees of freedom. Optica, 9, 824-841(2022).

    [4] N. Davidson, S. Mahler, A. Friesem, A. Forbes. Complex-light lasers. Opt. Photon. News, 33, 26-33(2022).

    [5] H. Cao, R. Chriki, S. Bittner, A. A. Friesem, N. Davidson. Complex lasers with controllable coherence. Nat. Rev. Phys., 1, 156-168(2019).

    [6] S. Knitter, C. Liu, B. Redding, M. K. Khokha, M. A. Choma, H. Cao. Coherence switching of a degenerate vecsel for multimodality imaging. Optica, 3, 403-406(2016).

    [7] C. Tradonsky, S. Mahler, G. Cai, V. Pal, R. Chriki, A. A. Friesem, N. Davidson. High-resolution digital spatial control of a highly multimode laser. Optica, 8, 880-884(2021).

    [8] S. Ngcobo, I. Itvine, L. Burger, A. Forbes. A digital laser for on-demand laser modes. Nat. Commun., 4, 2289(2013).

    [9] M. S. Seghilani, M. Myara, M. Sellahi, L. Legratiet, I. Sagnes, G. Beaudoin, P. Lalanne, A. Garnache. Vortex laser based on III-V semiconductor metasurface: direct generation of coherent Laguerre-Gauss modes carrying controlled orbital angular momentum. Sci. Rep., 6, 38156(2016).

    [10] M. Piccardo, M. de Oliveira, A. Toma, V. Aglieri, A. Forbes, A. Ambrosio. Vortex laser arrays with topological charge control and self-healing of defects. Nat. Photonics, 16, 359-365(2022).

    [11] S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödl, M. Miller, R. Jäger. Cavity solitons as pixels in semiconductor microcavities. Nature, 419, 699-702(2002).

    [12] Y. Tanguy, T. Ackemann, W. J. Firth, R. Jäger. Realization of a semiconductor-based cavity soliton laser. Phys. Rev. Lett., 100, 013907(2008).

    [13] P. Genevet, S. Barland, M. Giudici, J. R. Tredicce. Cavity soliton laser based on mutually coupled semiconductor microresonators. Phys. Rev. Lett., 101, 123905(2008).

    [14] P. Genevet, S. Barland, M. Giudici, J. R. Tredicce. Bistable and addressable localized vortices in semiconductor lasers. Phys. Rev. Lett., 104, 223902(2010).

    [15] N. N. Rosanov, G. V. Khodova. Diffractive autosolitons in nonlinear interferometers. J. Opt. Soc. Am. B, 7, 1057-1065(1990).

    [16] L. Lugiato. Introduction to the feature section on cavity solitons: an overview. IEEE J. Quantum Electron., 39, 193-196(2003).

    [17] P. Mandel, M. Tlidi. Transverse dynamics in cavity nonlinear optics (2000–2003). J. Opt. B Quantum Semiclass. Opt., 6, R60(2004).

    [18] T. Ackemann, P. R. B. E. Arimondo, W. J. Firth, C. C. Lin, G. Oppo. Chapter 6: Fundamentals and applications of spatial dissipative solitons in photonic devices. Advances in Atomic Molecular and Optical Physics, 57, 323-421(2009).

    [19] P. Coullet, C. Riera, C. Tresser. A new approach to data storage using localized structures. Chaos, 14, 193-198(2004).

    [20] F. Pedaci, P. Genevet, S. Barland, M. Giudici, J. R. Tredicce. Positioning cavity solitons with a phase mask. Appl. Phys. Lett., 89, 221111(2006).

    [21] F. Pedaci, G. Tissoni, S. Barland, M. Giudici, J. R. Tredicce. Mapping local defects of extended media using localized structures. Appl. Phys. Lett., 93, 111104(2008).

    [22] F. Pedaci, S. Barland, E. Caboche, P. Genevet, M. Giudici, J. R. Tredicce, T. Ackemann, A. J. Scroggie, W. J. Firth, G.-L. Oppo, G. Tissoni, R. Jäger. All-optical delay line using semiconductor cavity solitons. Appl. Phys. Lett., 92, 011101(2008).

    [23] F. Leo, S. Coen, P. Kockaert, S. Gorza, P. Emplit, M. Haelterman. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photonics, 4, 471-476(2010).

    [24] M. Marconi, J. Javaloyes, S. Balle, M. Giudici. How lasing localized structures evolve out of passive mode locking. Phys. Rev. Lett., 112, 223901(2014).

    [25] M. Marconi, J. Javaloyes, S. Barland, S. Balle, M. Giudici. Vectorial dissipative solitons in vertical-cavity surface-emitting lasers with delays. Nat. Photonics, 9, 450-455(2015).

    [26] P. Camelin, J. Javaloyes, M. Marconi, M. Giudici. Electrical addressing and temporal tweezing of localized pulses in passively-mode-locked semiconductor lasers. Phys. Rev. A, 94, 063854(2016).

    [27] S. Barland, S. Coen, M. Erkintalo, M. Giudici, J. Javaloyes, S. Murdoch. Temporal localized structures in optical resonators. Adv. Phys. X, 2, 496-517(2017).

    [28] N. Englebert, C. Mas-Arabi, P. Parra-Rivas, S. Gorza, F. Leo. Temporal solitons in a coherently driven active resonator. Nat. Photonics, 15, 536-541(2021).

    [29] T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, T. J. Kippenberg. Temporal solitons in optical microresonators. Nat. Photonics, 8, 145-152(2014).

    [30] A. Bao, H. Cooper, M. Rowley, L. Di Lauro, J. S. Totero Gongora, S. T. Chu, B. E. Little, G.-L. Oppo, R. Morandotti, D. J. Moss, B. Wetzel, M. Peccianti, A. Pasquazi. Observation of mode-locked spatial laser solitons. Nat. Photonics, 13, 384-389(2019).

    [31] L. G. Wright, D. N. Christodoulides, F. W. Wise. Spatiotemporal mode-locking in multimode fiber lasers. Science, 358, 94-97(2017).

    [32] L. G. Wright, P. Sidorenko, H. Pourbeyram, Z. M. Ziegler, A. Isichenko, B. A. Malomed, C. R. Menyuk, D. N. Christodoulides, F. W. Wise. Mechanisms of spatiotemporal mode-locking. Nat. Phys., 16, 565-570(2020).

    [33] A. Bartolo, N. Vigne, M. Marconi, G. Beaudoin, K. Pantzas, I. Sagnes, G. Huyet, F. Maucher, S. V. Gurevich, J. Javaloyes, A. Garnache, M. Giudici. Temporal localized Turing patterns in mode-locked semiconductor lasers. Optica, 9, 1386-1393(2022).

    [34] A. E. Siegman. Lasers(1986).

    [35] J. A. Arnaud. Degenerate optical cavities. Appl. Opt., 8, 189-196(1969).

    [36] P. Camelin, C. Schelte, A. Verschelde, A. Garnache, G. Beaudoin, I. Sagnes, G. Huyet, J. Javaloyes, S. Gurevich, M. Giudici. Temporal localized structures in mode-locked vertical external-cavity surface-emitting laser. Opt. Lett., 43, 5367-5370(2018).

    [37] S. Blin, R. Paquet, M. Myara, B. Chomet, L. Le Gratiet, M. Sellahi, G. Beaudoin, I. Sagnes, G. Ducournau, P. Latzel, J.-F. Lampin, A. Garnache. Coherent and tunable THz emission driven by an integrated III–V semiconductor laser. IEEE J. Sel. Top. Quantum Electron., 23, 1500511(2017).

    [38] I. Coddington, N. Newbury, W. Swann. Dual-comb spectroscopy. Optica, 3, 414-426(2016).

    [39] S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, U. Keller. Dual-comb modelocked laser. Opt. Express, 23, 5521-5531(2015).

    [40] J. Pupeikis, B. Willenberg, S. L. Camenzind, A. Benayad, P. Camy, C. R. Phillips, U. Keller. Spatially multiplexed single-cavity dual-comb laser. Optica, 9, 713-716(2022).

    [41] A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, A. Garnache. High power single–frequency continuously–tunable compact extended–cavity semiconductor laser. Opt. Express, 17, 9503-9508(2009).

    [42] X. Hachair, S. Barbay, T. Elsass, I. Sagnes, R. Kuszelewicz. Transverse spatial structure of a high Fresnel number vertical external cavity surface emitting laser. Opt. Express, 16, 9519-9527(2008).

    [43] A. A. Bartolo González. Spatial organization of localized pulses in a self-imaging vertical external cavity surface emitting laser(2022).

    [44] N. Vigne. 3D structured coherent light state emitted by a self imaging laser cavity based on semiconductor VECSEL technology(2022).

    [45] S. Gurevich, F. Maucher, N. Vigne, A. A. Bartolo, M. Marconi, G. Beaudoin, K. Pantzas, I. Sagnes, A. Garnache, M. Giudici, J. Javaloyes. Quartic beams of temporal solitons in a nearly-degenerated laser cavity. arXiv(2023).

    A. Bartolo, N. Vigne, M. Marconi, G. Beaudoin, L. Le Gratiet, K. Pantzas, I. Sagnes, A. Garnache, M. Giudici, "Spatiotemporally reconfigurable light in degenerate laser cavities," Photonics Res. 11, 1751 (2023)
    Download Citation