• Laser & Optoelectronics Progress
  • Vol. 59, Issue 15, 1516010 (2022)
Rongfei Wei†、*, Li Wang†、*, Fumin Lu, Fangfang Hu, and Hai Guo
Author Affiliations
  • Department of Physics, Zhejiang Normal University, Jinhua 321004, Zhejiang , China
  • show less
    DOI: 10.3788/LOP202259.1516010 Cite this Article Set citation alerts
    Rongfei Wei, Li Wang, Fumin Lu, Fangfang Hu, Hai Guo. Scintillating Performance of Sn2+-Doped Transparent Borosilicate Glass[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516010 Copy Citation Text show less
    References

    [1] An K, Li W F, Duan X J et al. Fiber-coupled GAGG_Ce X-ray detector for high-resolution imaging[J]. Acta Optica Sinica, 42, 0111001(2022).

    [2] Hu J D, Liang L H, Liu X M et al. Research on penetrated thickness and gray model of radiographic digital imaging[J]. Acta Optica Sinica, 41, 1034001(2021).

    [3] Hu Z, Hong C X, Hua W Q et al. Online monitoring of hard X-ray beam at SSRF[J]. Acta Optica Sinica, 41, 1534001(2021).

    [4] Han K, Sakhatskyi K, Jin J C et al. Seed-crystal-induced cold sintering toward metal halide transparent ceramic scintillators[J]. Advanced Materials, 34, 2110420(2022).

    [5] Ma J J, Zhu W J, Lei L et al. Highly efficient NaGdF4∶Ce/Tb nanoscintillator with reduced afterglow and light scattering for high-resolution X-ray imaging[J]. ACS Applied Materials & Interfaces, 13, 44596-44603(2021).

    [6] Zhou Q, Ren J W, Xiao J W et al. Highly efficient copper halide scintillators for high-performance and dynamic X-ray imaging[J]. Nanoscale, 13, 19894-19902(2021).

    [7] Gong J W, Chen B. Core devices and coupling modes of indirect X-ray detectors[J]. Laser & Optoelectronics Progress, 59, 0700003(2022).

    [8] Chen J W, Gao H Y, Xie H L et al. X-ray detectors[J]. Laser & Optronics Progress, 40, 24-30(2003).

    [9] Han L L, Zhang H, Ning Y Y et al. Environmentally stable one-dimensional copper halide based ultra-flexible composite film for low-cost X-ray imaging screens[J]. Chemical Engineering Journal, 430, 132826(2022).

    [10] Li N, Xu Z W, Xiao Y R et al. Flexible, high scintillation yield Cu3Cu2I5 film made of ball-milled powder for high spatial resolution X-ray imaging[J]. Advanced Optical Materials, 10, 2102232(2022).

    [11] He D B, Yu C L, Cheng J M et al. Effect of Tb3+ concentration and sensitization of Ce3+ on luminescence properties of terbium doped phosphate scintillating glass[J]. Journal of Alloys and Compounds, 509, 1906-1909(2011).

    [12] Chen S Y Z, Wen Z X, Peng X S et al. Transparent heavily Eu3+-doped boroaluminate glass for X-ray detection[J]. Ceramics International, 48, 947-952(2022).

    [13] Wei R F, Chen W P, Peng X S et al. Scintillating property of Tb3+ doped bulk dense glass ceramics containing Gd4.67(SiO4)3O nanocrystals[J]. Journal of the Chinese Ceramic Society, 47, 265-269(2019).

    [14] Zhang Y, Ding N, Zheng T et al. Effects of Ce3+ sensitizer on the luminescent properties of Tb3+-activated silicate oxyfluoride scintillating glass under UV and X-ray excitation[J]. Journal of Non-Crystalline Solids, 441, 74-78(2016).

    [15] Mao W, Xie W Q, Li P P et al. Double relaxation emission of Sn2+ activator in tin fluorophosphate glass for optoelectronic device applications[J]. Chemical Engineering Journal, 399, 125270(2020).

    [16] Masai H, Suzuki Y, Yanagida T et al. Luminescence of Sn2+ center in ZnO-B2O3 glasses melted in air and Ar conditions[J]. Bulletin of the Chemical Society of Japan, 88, 1047-1053(2015).

    [17] Zhang L B, Sun Q, Wang J T et al. Effect of SrO content on microstructure of Bi2O3-B2O3-ZnO-BaO-SrO low-melting glass frit and joining performance of sodalime glass substrates[J]. Journal of Alloys and Compounds, 872, 159707(2021).

    [18] Jiang X B, Zou Y, Han S et al. Radioluminescence properties of Sn2+-doped borosilicate glass with high Gd2O3[J]. Acta Optica Sinica, 38, 0816002(2018).

    [19] Yang K, Zheng S P, Jiang X B et al. Luminescence and scintillation of high silica glass containing SnO[J]. Materials Letters, 204, 5-7(2017).

    [20] Wei R F, Ma C G, Wei Y L et al. Tunable white luminescence and energy transfer in novel Cu+, Sm3+ co-doped borosilicate glasses for W-LEDs[J]. Optics Express, 20, 29743-29750(2012).

    [21] Qiu Z H, Wang S H, Wang W Q et al. Polymer composites entrapped Ce-doped LiYF4 microcrystals for high-sensitivity X-ray scintillation and imaging[J]. ACS Applied Materials & Interfaces, 12, 29835-29843(2020).

    [22] Wang X, Shi H F, Ma H L et al. Organic phosphors with bright triplet excitons for efficient X-ray-excited luminescence[J]. Nature Photonics, 15, 187-192(2021).

    [23] Chen W P, Cao J K, Hu F F et al. Highly efficient Na5Gd9F32∶Tb3+ glass ceramic as nanocomposite scintillator for X-ray imaging[J]. Optical Materials Express, 8, 41-49(2017).

    [24] Teng L M, Zhang W N, Chen W P et al. Highly efficient luminescence in bulk transparent Sr2GdF7∶Tb3+ glass ceramic for potential X-ray detection[J]. Ceramics International, 46, 10718-10722(2020).

    [25] Hu F F, Gong H L, Wang J et al. Structure and spectral properties of NaY2F7∶Eu3+/Eu2+ transparent glass-ceramics[J]. Laser & Optoelectronics Progress, 58, 1516020(2021).

    [26] Yang B, Pan W C, Wu H D et al. Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging[J]. Nature Communications, 10, 1989(2019).

    [27] Yoneyama A, Baba R, Kawamoto M. Quantitative analysis of the physical properties of CsI, GAGG, LuAG, CWO, YAG, BGO, and GOS scintillators using 10-, 20- and 34-keV monochromated synchrotron radiation[J]. Optical Materials Express, 11, 398-411(2021).

    [28] Zhao J T, Huang L H, Liang T Y et al. Luminescent properties of Eu3+ doped heavy tellurite scintillating glasses[J]. Journal of Luminescence, 205, 342-345(2019).

    [29] Han T T, Sun X Y, Lai X Q et al. Role of Gd2O3 on tailoring structural and optical properties of Tb3+-activated borogermanate-tellurite glasses[J]. Radiation Physics and Chemistry, 189, 109734(2021).

    [30] Wantana N, Kaewjaeng S, Kothan S et al. Energy transfer from Gd3+ to Sm3+ and luminescence characteristics of CaO-Gd2O3-SiO2-B2O3 scintillating glasses[J]. Journal of Luminescence, 181, 382-386(2017).

    [31] Griscom D L. Trapped-electron centers in pure and doped glassy silica: a review and synthesis[J]. Journal of Non-Crystalline Solids, 357, 1945-1962(2011).

    [32] Griscom D L. A minireview of the natures of radiation-induced point defects in pure and doped silica glasses and their visible/near-IR absorption bands, with emphasis on self-trapped holes and how they can be controlled[J]. Physics Research International, 2013, 379041(2013).

    [33] Hu T, Ning L X, Gao Y et al. Glass crystallization making red phosphor for high-power warm white lighting[J]. Light: Science & Applications, 10, 56(2021).

    Rongfei Wei, Li Wang, Fumin Lu, Fangfang Hu, Hai Guo. Scintillating Performance of Sn2+-Doped Transparent Borosilicate Glass[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516010
    Download Citation