• Laser & Optoelectronics Progress
  • Vol. 54, Issue 9, 90008 (2017)
Wang Wenhua*, Xiong Zhengye, Shi Wenqing, Huang Jiang, Tian Xiuyun, Fei Xianxiang, and Xie Yuping
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop54.090008 Cite this Article Set citation alerts
    Wang Wenhua, Xiong Zhengye, Shi Wenqing, Huang Jiang, Tian Xiuyun, Fei Xianxiang, Xie Yuping. Fiber-Optic Surface Plasmon Resonance Sensing Technology[J]. Laser & Optoelectronics Progress, 2017, 54(9): 90008 Copy Citation Text show less
    References

    [1] Wood R W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum[C]. Proceedings of the Physical Society of London, 1902, 18(1): 269-275.

    [2] Powell C J, Swan J B. Origin of the characteristic electron energy losses in aluminum[J]. Physical Review, 1959, 115(4): 869-875.

    [3] Stern E A, Ferrell R A. Surface plasma oscillations of a degenerate electron gas[J]. Physical Review, 1960, 120(1): 130-136.

    [4] Otto A. Excitation of surface plasma waves in silver by the method of frustrated total reflection[J]. Zeitschriftfür Physik A Hadrons and Nuclei, 1968, 216(4): 398-410.

    [5] Kretschmann E, Raether H. Radiative decay of non-radiative surface plasmons excited by light[J]. Zeitschrift für Naturforschung A, 1968, 23(12): 2135-2136.

    [6] Nylander C, Bo L, Lind T. Gas detection by means of surface plasmon resonance[J]. Sensors and Actuators, 1982, 3: 79-88.

    [7] Song Xiao, Zhao Xuewei, Hong Ruijin, et al. Fabrication and the surface plasmon resonance properties of Al/Al2O3 composite films[J]. Acta Optica Sinica, 2015, 35(12): 1231001.

    [8] Chen Qianghua, Liu Jinghai, Luo Huifu, et al. Refractive index measurement system of liquid based on surface plasmon resonance[J]. Acta Optica Sinica, 2015, 35(5): 0512002.

    [9] Qi Pan, Ma Xiao, Zhang Zibang, et al. Research on anti-noise-interference method of angle scanning surface plasmon resonance sensor[J]. Laser & Optoelectronics Progress, 2015, 52(5): 052401.

    [10] Shen Fafu, Cui Jie, Sun Nanling, et al. Transmission spectrum modulator based on metallic nanowire gratings[J]. Laser & Optoelectronics Progress, 2016, 53(4): 043301.

    [11] Villuendas F, Pelayo J. Optical fiber device for chemical sensing based on surface plasmon excitation[J]. Sensors and Actuators A: Physical, 1990, 423(1/2/3): 1142-1145.

    [12] Jorgenson R C, Yee S S. A fiber-optic chemical sensor based on surface plasmon resonance[J]. Sensors and Actuators B: Chemical, 1993, 12(3): 213-220.

    [13] Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors: Review[J]. Sensors and Actuators B: Chemical, 1999, 54(1/2): 3-15.

    [14] Roh S, Chung T, Lee B. Overview of the characteristics of micro- and nano-structured surface plasmon resonance fiber sensors[J]. Sensors, 2011, 11(2): 1565-1588.

    [15] Gupta B D, Verma R K. Surface plasmon resonance-based fiber optic sensors: Principle, probe designs, and some applications[J]. Journal of Sensors, 2009, 2009(2): 979761.

    [16] Sharma A K, Gupta B D. Comparison of performance parameters of conventional and nano-plasmonic fiber optic sensors[J]. Plasmonics, 2007, 2(2): 51-54.

    [17] Kim Y C, Peng W, Baneiji S, et al. Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases[J]. Optics Letters, 2005, 30(17): 2218-2220.

    [18] Lin H Y, Tsai W H, Tsao Y C. et al. Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light[J]. Applied Optics, 2007, 46(5): 800-806.

    [19] Verma R K, Gupta B D. Theoretical modeling of a bi-dimensional U-shaped surface plasmon resonance based fibre optic sensor for sensitivity enhancement[J]. Journal of Physics D: Applied Physics, 2008, 41(9): 0951061.

    [20] Iga M, Seki A, Watanabe K. Gold thickness dependence of SPR-based hetero-core structured optical fiber sensor[J]. Sensors and Actuators B: Chemical, 2005, 106(1): 363-368.

    [21] Malinsky M D, Kelly K L, Schatz G C, et al. Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nano-particles chemically modified with alkanethiol self-assembled monolayers[J]. Journal of the American Chemical Society, 2001, 123(7): 1471-1482.

    [22] Zhang Y, Gu C, Schwartzberg A M, et al. Surface-enhanced Raman scattering sensor based on D-shaped fiber[J]. Applied Physics Letters, 2005, 87(12): 123105.

    [23] Wang Kemin. Theory and method of photochemical sensor[M]. Changsha: Hunan Education Press, 1995.

    [24] Sharma A K, Gupta B D. On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors[J]. Journal of Applied Physics, 2007, 101(9): 093111.

    [25] Zeng J, Liang D K. Application of fiber optic surface plasmon resonance sensor for measuring liquid refractive index[J]. Journal of Intelligent Material Systems & Structures, 2006, 17(8/9): 787-791.

    [26] Verma R K, Sharma A K, Gupta B D. Surface plasmon resonance based tapered fiber optic sensor with different taper profiles[J]. Optics Communications, 2008, 281(6): 1486-1491.

    [27] Bender W J H, Dessey R E, Miller M S, et al. Feasibility of a chemical microsensor based on surface plasmon resonance on fiber optics modified by multilayer vapor deposition[J]. Analytical Chemistry, 1994, 66(7): 963-970.

    [28] Weiss M N, Srivastava R, Groger H. Experimental investigation of a surface plasmon-based integrated-optic humidity sensor[J]. Electronics Letters, 1996, 32(9): 842-843.

    [29] Link S, Wang Z L, El-Sayed M A. Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition[J]. The Journal of Physical Chemistry B, 1999, 103(18): 3529-3533.

    [30] Cheng C S, Chen Y Q, Lu C J. Organic vapour sensing using localized surface plasmon resonance spectrum of metallic nanoparticles self assemble monolayer[J]. Talanta, 2007, 73(2): 358-365.

    [31] Balaa K, Kanso M, Cuenot S, et al. Experimental realization and numerical simulation of wavelength-modulated fibre optic sensor based on surface plasmon resonance[J]. Sensors and Actuators B: Chemical, 2007, 126(1): 198-203.

    [32] Dwivedi Y S, Sharma A K, Gupta B D. Influence of skew rays on the sensitivity and signal-to-noise ratio of a fiber-optic surface-plasmon-resonance sensor: A theoretical study[J]. Applied Optics, 2007, 46(21): 4563-4569.

    [33] Srivastava1 S K. Fiber optic plasmonic sensors: Past, present and future[J]. The Open Optics Journal, 2013, 7(1): 58-83.

    [34] Obando L A, Booksh K S. Tuning dynamic range and sensitivity of white-light, multimode, fiber-optic surface plasmon resonance sensors[J]. Analytical Chemistry, 1999, 71(22): 5116-5122.

    [35] Suzuki H, Sugimoto M, Matsui Y, et al. Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor[J]. Sensorsand Actuators B: Chemical, 2008, 132(1): 26-33.

    [36] Roh S, Kim H, Lee B. A comparative analysis of surface plasmon resonance fiber sensor with symmetric and asymmetric metal coating by three-dimensional ray-tracing[C]. SPIE, 2010, 7781: 778111.

    [37] Díez A, Andrés M V, Cruz J L. In-line fiber-optic sensors based on the excitation of surface plasma mo des in meta l-coated tapered fibers[J]. Sensors and Actuators B: Chemical, 2001, 73(2/3): 95-99.

    [38] Slavík R, Homola J, Ctyroky J, et al. Novel spectral fiber optic sensor based on surface plasmon resonance[J]. Sensors and Actuators B: Chemical, 2001, 74(1/2/3): 106-111.

    [39] Slavík R, Homola J, cˇtyroky' J. A miniature fiber optic surface plasmon resonance sensor for fast detection of staphylococcal enterotoxin[J]. Biosensors and Bioelectronics, 2002, 17(6-7): 591-595.

    [40] Nemova G, Kashyap R. Fiber-Bragg-grating-assisted surface plasmon polariton sensor[J]. Optics Letters, 2006, 31(14): 2118-2220.

    [41] Spackov B, Homol A J. Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating[J]. Optics Express, 2009, 17(25): 23254-23264.

    [42] Yanina Y, Albert J. Plasmon resonances in gold-coated tilted fiber Bragg gratings[J]. Optics Letters, 2007, 32(3): 211-213.

    [43] Allsop T, Neal R, Rehman S, et al. Generation of infrared surface plasmon resonances with high refractive index sensitivity utilizing tilted fiber Bragg gratings[J]. Applied Optics, 2007, 46(22): 5456-5460.

    [44] Allsop T, Neal R, Rehman S, et al. Characterization of infrared surface plasmon resonances generated from a fiber-optical sensor utilizing tilted Bragg gratings[J]. Journal of the Optical Society America B, 2008, 25(4): 481-490.

    [45] He Y J, Lo Y L, Huang J F. Optical-fiber surface-plasmon-resonance sensor employing long-period fiber gratings in multiplexing[J]. Journal of the Optical Society of America B, 2006, 23(5): 801-811.

    [46] Tang J L, Cheng S F, Hsu W T, et al. Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating[J]. Sensors and Actuators B: Chemical, 2006, 119(1): 105-109.

    [47] He Y J. Investigation of LPG-SPR sensors using the finite element method and eigenmode expansion method[J]. Optics Express, 2013, 21(12): 13875-13895.

    [48] Coelho L, Queirós R B, Santos J L, et al. DNA-Aptamer optical biosensors based on a LPG-SPR optical fiber platform for point-of-care diagnostic[C]. SPIE, 2014, 8957: 85970K.

    [49] Yuan Y Q, Wang L N, Huang J. Theoretical investigation for two cascaded SPR fiber optic sensors[J]. Sensors and Actuators B: Chemical, 2012, 161(1): 269-273.

    [50] Lin H Y, Huang C H, Huang C C, et al. Multiple resonance fiber-optic sensor with time division multiplexing for multianalyte detection[J]. Optics Letters, 2012, 37(19): 3969-3971.

    [51] pacˇková B, Piliarik M, Kvasnicˇka P, et al. Novel concept of multi-channel fiber optic surface plasmon resonance sensor[J]. Sensors and Actuators B: Chemical, 2015, 139(1): 199-203.

    [52] Wang W H, Wu W N, Huang J, et al. Modeling of a long-period fiber-optic grating assisted surface Plasmon resonance refractive index sensor[C]. SPIE, 2016, 10025: 100251C.

    [53] Peng W, Banerji S, Kim Y C. Investigation of dual-channel fiber-optic surfaceplasmon resonance sensing for biological applications[J]. Optics Letters, 2005, 30(22): 2988-2990.

    [54] Weng S J, Pei L, Wang J S, et al. High sensitivity D-shaped hole fiber temperature sensor based on surface plasmon resonance with liquid filling[J]. Photonics Research, 2017, 5(2): 103-107.

    [55] Zeng Jie, Liang Dakai, Du Yan. Quasi-distributed optical fiber sensor based on surface plasmon resonance[J]. Chinese J Lasers, 2007, 34(2): 243-248.

    [56] Cao Zhenxin, Liang Dakai, Guo Mingjiang. Experimental study on the relationship between film thickness and resonant wavelength based on the optic fiber SPW sensor[J]. Acta Optica Sinica, 2003, 23(1): 125-128.

    [57] Caucheteur C, Voisin V, Albert J. Near-infrared grating-assisted SPR optical fiber sensors: Design rules for ultimate refractometric sensitivity[J]. Optics Express, 2015, 23(3): 2918-2932.

    [58] Tabassum R, Gupta B D. Fiber optic manganese ions sensor using SPR and nanocomposite of ZnO-polypyrrole[J]. Sensors and Actuators B: Chemical, 2015, 220: 903-909.

    [59] Liu Z H, Wei Y, Zhang Y, et al. Compact distributed fiber SPR sensor based on TDM and WDM technology[J]. Optics Express, 2015, 23(18): 24004-24012.

    [60] Liu Z H, Wei Y, Zhang Y, et al. A multi-channel fiber SPR sensor based on TDM technology[J]. Sensors and Actuators B: Chemical, 2016, 226: 326-331.

    [61] Yu X, Zhang Y, Pan S S, et al. A selectively coated photonic crystal fiber based surface plasmon resonance sensor[J]. Journal of Optics, 2010, 12(1): 015005.

    [62] Skorobogatiy M. Microstructured and photonic bandgap fibers for applications in the resonant bio- and chemical sensors[J]. Journal of Sensors, 2009, 2009: 524237.

    [63] Rifat A A, Mahdiraji G A, Sua Y M, et al. Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor[J]. Optics Express, 2016, 24(3): 2485-2495.

    [64] Li Z H, Chen T, Zhang Z G, et al. Highly sensitive surface plasmon resonance sensor utilizing a long period grating with photosensitive cladding[J]. Applied Optics, 2016, 55(6): 1470-1480.

    [65] Li Z H, Ruan X K, Dai Y X, et al. Numerical analysis of high-sensitivity refractive index sensor based on LPFG with band-pass transmission[J]. IEEE Senors Journal, 2016, 16(20): 7500-7507.

    [66] Wei W, Nong J P, Zhang G W, et al. Graphene-based long-period fiber grating surface plasmon resonance sensor for high-sensitivity gas sensing[J]. Sensors, 2017, 17(1): s17010002.

    Wang Wenhua, Xiong Zhengye, Shi Wenqing, Huang Jiang, Tian Xiuyun, Fei Xianxiang, Xie Yuping. Fiber-Optic Surface Plasmon Resonance Sensing Technology[J]. Laser & Optoelectronics Progress, 2017, 54(9): 90008
    Download Citation