• Laser & Optoelectronics Progress
  • Vol. 54, Issue 1, 11407 (2017)
Ding Hua1, Li Yanwei1, and Yuan Dongqing2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop54.011407 Cite this Article Set citation alerts
    Ding Hua, Li Yanwei, Yuan Dongqing. Roughness Prediction of Laser Drilling Pore Surface Based on Back-Propagation Artificial Neural Networks[J]. Laser & Optoelectronics Progress, 2017, 54(1): 11407 Copy Citation Text show less
    References

    [1] Zhang Jinqi, Li Jianmei, Lu Changhou, et al. Progress of numerical simulation of laser thermal effects[J]. Mechanical & Electrical Engineering Magazine, 2014, 31(11): 1317-1324.

    [2] Franco A, Rashed C A A, Romoli L. Analysis of energy consumption in micro-drilling processes[J]. Journal of Cleaner Production, 2016, 137: 1260-1269.

    [3] Yang Y, Chen Z, Zhang Y. Melt flow and heat transfer in laser drilling[J]. International Journal of Thermal Sciences, 2016, 107: 141-152.

    [4] Wang Zhiyong, Chen Kai, Zuo Tiechuan, et al. Study on the influence of assisted gas on laser drilling[J]. Laser Journal, 2000, 21(6): 44-46.

    [5] Hidai H, Kuroki Y, Matsusaka S, et al. Curved drilling via inner hole laser reflection[J]. Precision Engineering, 2016, 46: 96-103.

    [6] Nagesh S, Murthy H N, Pal R, et al. Influence of nanofillers on the quality of CO2 laser drilling in vinylester/glass using orthogonal array experiments and grey relational analysis[J]. Optics & Laser Technology, 2015, 69: 23-33.

    [7] Wang Minghai, Wang Jinggang, Zheng Yaohui, et al. Modeling and finite element analysis on surface roughness of milling TC11 tianium alloy[J]. Machine Tool & Hydraulics, 2014, 42(7): 52-55.

    [8] Wu Dehui. A prediction model for surface roughness in milling based on least square support vector machine[J]. Chinese Journal of Mechanical Engineering, 2007, 18(7): 838-841.

    [9] Xu Zhaomei, Zhou Jianzhong, Huang Shu, et al. Quality prediction of laser milling based on optimized back propagation networks by genetic algorithms[J]. Chinese J Lasers, 2013, 40(6): 0603004.

    [10] Ni Libin, Liu Jichang, Wu Yaoting, et al. Optimization of laser cladding process variables based on neural network and particle swarm optimization algorithms[J]. Chinese J Lasers, 2011, 38(2): 0203003.

    [11] Yang Donghui, Ma Liang, Huang Weidong. Component′s surface quality predictions by laser rapid forming based on artificial neural networks[J]. Chinese J Lasers, 2011, 38(8): 0803004.

    [12] Chen Guangxia, Wang Zemin, Guan Kai, et al. Effects of parameters on surface roughness of samples by selective laser melting[J]. Manufacturing Technology & Machine Tool, 2009(12): 86-89.

    [13] Wu Xuefeng, Wang Yang. The technology and development of laser assisted machining[J]. Journal of Harbin University of Science and Technology, 2012, 17(4): 34-45.

    [14] Yan Dongsheng, Cao Zhiqing, Han Ke, et al. Roughness measurement of micro-hole processed by laser[J]. Tool Engineering, 2003, 37(10): 52-55.

    [15] Ge Shirong. The fractal behavior and fractal characterization of rough surfaces[J]. Tribology, 1997, 17(1): 73-80.

    [16] Li Xiaomei, Ding Ning, Zhu Xilin. On-line identification model of surface roughness based on fuzzy-neural networks[J]. Chinese Journal of Mechanical Engineering, 2007, 43(3): 212-217.

    [17] Guo Huafeng, Li Juli, Sun Tao. Roughness prediction of kerf cut with fiber laser based on BP artificial neural networks[J]. Laser Technology, 2014, 38(6): 798-803.

    [18] Cheng Wentao. Research of grinding surface roughness based on artificial neural networks[D]. Changsha: Hunan University, 2006.

    Ding Hua, Li Yanwei, Yuan Dongqing. Roughness Prediction of Laser Drilling Pore Surface Based on Back-Propagation Artificial Neural Networks[J]. Laser & Optoelectronics Progress, 2017, 54(1): 11407
    Download Citation