• Laser & Optoelectronics Progress
  • Vol. 54, Issue 11, 111401 (2017)
Wang Yongsheng1、2, Zhao Tong1、2, Wang Anbang1、2, Zhang Mingjiang1、2, and Wang Yuncai1、2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop54.111401 Cite this Article Set citation alerts
    Wang Yongsheng, Zhao Tong, Wang Anbang, Zhang Mingjiang, Wang Yuncai. Design and Dynamic Characteristics of an External-Cavity Semiconductor Laser Generating Wide Bandwidth Chaos[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111401 Copy Citation Text show less
    References

    [1] Sciamanna M, Shore K A. Physics and applications of laser diode chaos[J]. Nature Photonics, 2015, 9(3): 151-162.

    [2] Argyris A, Syvridis D, Larger L, et al. Chaos-based communications at high bit rates using commercial fibre-optic links[J]. Nature, 2005, 438(7066): 343-346.

    [3] Soriano M C, García-Ojalvo J, Mirasso C R, et al. Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers[J]. Reviews of Modern Physics, 2013, 85(1): 421-470.

    [4] Fang Nian, Wang Lutang, Guo Shuqin, et al. Security of polarization-shift keying chaos optical communication system[J]. Acta Optica Sinica, 2006, 26(6): 812-817

    [5] Liu Jingang, Shen Ke, Zhou Liwei. Study on mechanism of secure communication with driven chaos masking in optical bistable system[J]. Acta Optica Sinica, 1997, 17(11): 1473-1478.

    [6] Pan Xingmao, Wu Zhengmao, Tang Xi, et al. Chaos synchronization and communication in mesh network based on mutually coupled semiconductor lasers[J]. Chinese J Lasers, 2013, 40(12): 1202005.

    [7] Wang Feifei, Zhang Li, Yang Lingzhen, et al. Quasi-distributed fiber Bragg grating sensing network based on fiber chaotic laser[J]. Acta Optica Sinica, 2014, 34(8): 0806006.

    [8] Uchida A, Amano K, Inoue M, et al. Fast physical random bit generation with chaotic semiconductor lasers[J]. Nature Photonics, 2008, 2(12): 728-732.

    [9] Reidler I, Aviad Y, Rosenbluh M, et al. Ultrahigh-speed random number generation based on a chaotic semiconductor laser[J]. Physical Review Letters, 2009, 103(2): 024102.

    [10] Li Pu, Wang Yuncai. Research progress in physical random number generator based on laser chaos for high-speed secure communication[J]. Laser & Optoelectronics Progress, 2014, 51(6): 060002.

    [11] Yan Qiurong, Cao Qingshan, Zhao Baosheng, et al. High speed random number generator based on digitizing bandwidth-enhanced chaotic laser signal[J]. Chinese J Lasers, 2015, 42(11): 1102004.

    [12] Lin F Y, Liu J M. Chaotic radar using nonlinear laser dynamics[J]. IEEE Journal of Quantum Electronics, 2004, 40(6): 815-820.

    [13] Lin F Y, Liu J M. Chaotic lidar[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(5): 991-997.

    [14] Wang A, Wang N, Yang Y, et al. Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser[J]. Journal of Lightwave Technology, 2012, 30(21): 3420-3426.

    [15] Wang Y, Wang B, Wang A. Chaotic correlation optical time domain reflectometer utilizing laser diode[J]. IEEE Photonics Technology Letters, 2008, 20(19): 1636-1638.

    [16] Koch T L, Koren U. Semiconductor photonic integrated circuits[J]. IEEE Journal of Quantum Electronics, 2002, 27(3): 641-653.

    [17] Charbonneau S, Koteles E S, Poole P J, et al. Photonic integrated circuits fabricated using ion implantation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1998, 4(4): 772-793.

    [18] Hofstetter D, Maisenholder B, Zappe H P. Quantum-well intermixing for fabrication of lasers and photonic integrated circuits[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 4(4): 794-802.

    [19] Bauer S, Brox O, Kreissl J, et al. Nonlinear dynamics of semiconductor lasers with active optical feedback[J]. Physical Review E, 2004, 69(2): 016206.

    [20] Ushakov O, Bauer S, Brox O, et al. Self-organization in semiconductor lasers with ultrashort optical feedback[J]. Physical Review Letters, 2004, 92(4): 043902.

    [21] Yousefi M, Barbarin Y, Beri S, et al. New role for nonlinear dynamics and chaos in integrated semiconductor laser technology[J]. Physical Review Letters, 2007, 98(4): 044101.

    [22] Argyris A, Hamacher M, Chlouverakis K E, et al. Photonic integrated device for chaos applications in communications[J]. Physical Review Letters, 2008, 100(19): 194101.

    [23] Tronciu V Z, Ermakov I V, Colet P, et al. Chaotic dynamics of a semiconductor laser with double cavity feedback: Applications to phase shift keying modulation[J]. Optics Communications, 2008, 281(18): 4747-4752.

    [24] Harayama T, Sunada S, Yoshimura K, et al. Fast nondeterministic random-bit generation using on-chip chaos lasers[J]. Physical Review A, 2011, 83(3): 622-624.

    [25] Sunada S, Harayama T, Arai K, et al. Chaos laser chips with delayed optical feedback using a passive ring waveguide[J]. Optics Express, 2011, 19(7): 5713-5724.

    [26] Wu J G, Zhao L J, Wu Z M, et al. Direct generation of broadband chaos by a monolithic integrated semiconductor laser chip[J]. Optics Express, 2013, 21(20): 23358-23364.

    [27] Liu D, Sun C, Xiong B, et al. Nonlinear dynamics in integrated coupled DFB lasers with ultra-short delay[J]. Optics Express, 2014, 22(5): 5614-5622.

    [28] Yu L, Lu D, Pan B, et al. Monolithically integrated amplified feedback lasers for high-quality microwave and broadband chaos generation[J]. Journal of Lightwave Technology, 2014, 32(20): 3595-3601.

    [29] Yee D S, Leem Y A, Kim S B, et al. Loss-coupled distributed-feedback lasers with amplified optical feedback for optical microwave generation[J]. Optics Letters, 2004, 29(19): 2243-2245.

    [30] Argyris A, Deligiannidis S, Pikasis E, et al. Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit[J]. Optics Express, 2010, 18(18): 18763-18768.

    [31] Takahashi R, Akizawa Y, Uchida A, et al. Fast physical random bit generation with photonic integrated circuits with different external cavity lengths for chaos generation[J]. Optics Express, 2014, 22(10): 11727-11740.

    [32] Wünsche H J, Bauer S, Kreissl J, et al. Synchronization of delay-coupled oscillators: A study of semiconductor lasers[J]. Physical Review Letters, 2005, 94(16): 163901.

    [33] Perez T, Radziunas M, Wunsche H J, et al. Synchronization properties of two coupled multisection semiconductor lasers emitting chaotic light[J]. IEEE Photonics Technology Letters, 2006, 18(20): 2135-2137.

    [34] Argyris A, Grivas E, Hamacher M, et al. Chaos-on-a-chip secures data transmission in optical fiber links[J]. Optics Express, 2010, 18(5): 5188-5198.

    [35] Monfils I, Cartledge J C. Detailed theoretical and experimental characterization of 10 Gb/s clock recovery using a Q-switched self-pulsating laser[J]. Journal of Lightwave Technology, 2009, 27(5): 619-626.

    [36] Sun Y, Pan J Q, Zhao L J, et al. All-optical clock recovery for 20 Gb/s using an amplified feedback DFB laser[J]. Journal of Lightwave Technology, 2010, 28(17): 2521-2525.

    [37] Sunada S, Shinohara S, Fukushima T, et al. Signature of wave chaos in spectral characteristics of microcavity lasers[J]. Physical Review Letters, 2016, 116(20): 203903.

    [38] Cartledge J C, Srinivasan R C. Extraction of DFB laser rate equation parameters for system simulation purposes[J]. Journal of Lightwave Technology, 1997, 15(5): 852-860.

    [39] Bjerkan L, Royset A, Hafskjaer L, et al. Measurement of laser parameters for simulation of high-speed fiberoptic systems[J]. Journal of Lightwave Technology, 1996, 14(5): 839-850.

    [40] Wen Y F. Extraction of semiconductor laser rate equation parameters for simulation of fiber-optical communication system purpose[D]. Hamilton: McMaster University, 2012.

    CLP Journals

    [1] Li Qiliang, Lu Shanshan, Bao Qi, Chen Dewang, Tang Xianghong, Hu Miao, Zeng Ran, Yang Guowei. Bidirectional Signal Transmission Based on Two Coupled Chaotic Semiconductor Lasers[J]. Chinese Journal of Lasers, 2018, 45(5): 506001

    Wang Yongsheng, Zhao Tong, Wang Anbang, Zhang Mingjiang, Wang Yuncai. Design and Dynamic Characteristics of an External-Cavity Semiconductor Laser Generating Wide Bandwidth Chaos[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111401
    Download Citation