• Photonics Research
  • Vol. 9, Issue 5, 873 (2021)
Ji-Xiang Chen1, Xiang-Yue Li1, Ti-Jian Li1, Ze-Yu Zhan1, Meng Liu1, Can Li2, Ai-Ping Luo1, Pu Zhou2, Kenneth K.-Y. Wong3, Wen-Cheng Xu1、4, and Zhi-Chao Luo1、*
Author Affiliations
  • 1Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices & Guangzhou Key Laboratory for Special Fiber Photonic Devices and Applications, South China Normal University, Guangzhou 510006, China
  • 2College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 3Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
  • 4e-mail: xuwch@scnu.edu.cn
  • show less
    DOI: 10.1364/PRJ.419273 Cite this Article Set citation alerts
    Ji-Xiang Chen, Xiang-Yue Li, Ti-Jian Li, Ze-Yu Zhan, Meng Liu, Can Li, Ai-Ping Luo, Pu Zhou, Kenneth K.-Y. Wong, Wen-Cheng Xu, Zhi-Chao Luo. 1.7-μm dissipative soliton Tm-doped fiber laser[J]. Photonics Research, 2021, 9(5): 873 Copy Citation Text show less
    References

    [1] M. E. Fermann, I. Hartl. Ultrafast fibre lasers. Nat. Photonics, 7, 868-874(2013).

    [2] C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, F. Ö. Ilday. Ablation-cooled material removal with ultrafast bursts of pulses. Nature, 537, 84-88(2016).

    [3] N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, C. Xu. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photonics, 7, 205-209(2013).

    [4] E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, N. Gisin. Roadmap of optical communications. J. Opt., 18, 063002(2016).

    [5] S. P. Chong, C. W. Merkle, D. F. Cooke, T. Zhang, H. Radhakrishnan, L. Krubitzer, V. J. Srinivasan. Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7  μm optical coherence tomography. Opt. Lett., 40, 4911-4914(2015).

    [6] M. Yamanaka, T. Teranishi, H. Kawagoe, N. Nishizawa. Optical coherence microscopy in 1700 nm spectral band for high-resolution label-free deep-tissue imaging. Sci. Rep., 6, 31715(2016).

    [7] C. Li, J. Shi, X. Gong, C. Kong, Z. C. Luo, L. Song, K. K. Y. Wong. 1.7  μm wavelength tunable gain-switched fiber laser and its application to spectroscopic photoacoustic imaging. Opt. Lett., 43, 5849-5852(2018).

    [8] K. Wang, C. Xu. Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy. Appl. Phys. Lett., 99, 071112(2011).

    [9] H. Y. Chung, W. Liu, Q. Cao, F. X. Kärtner, G. Chang. Er-fiber laser enabled, energy scalable femtosecond source tunable from 1.3 to 1.7 µm. Opt. Express, 25, 15760-15771(2017).

    [10] S. Firstov, S. Alyshev, M. Melkumov, K. Riumkin, A. Shubin, E. Dianov. Bismuth-doped optical fibers and fiber lasers for a spectral region of 1600–1800 nm. Opt. Lett., 39, 6927-6930(2014).

    [11] S. D. Agger, J. H. Povlsen. Emission and absorption cross section of thulium doped silica fibers. Opt. Express, 14, 50-57(2006).

    [12] S. D. Jackson. The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared. Laser Photonics Rev., 3, 466-482(2009).

    [13] Z. Li, Y. Jung, J. M. O. Daniel, N. Simakov, M. Tokurakawa, P. C. Shardlow, D. Jain, J. K. Sahu, A. M. Heidt, W. A. Clarkson, S. U. Alam, D. J. Richardson. Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers. Opt. Lett., 41, 2197-2200(2016).

    [14] L. Zhang, J. Zhang, Q. Sheng, S. Sun, C. Shi, S. Fu, X. Bai, Q. Fang, W. Shi, J. Yao. Efficient multi-watt 1720 nm ring-cavity Tm-doped fiber laser. Opt. Express, 28, 37910-37918(2020).

    [15] C. Li, X. Wei, C. Kong, S. Tan, N. Chen, J. Kang, K. K. Y. Wong. Fiber chirped pulse amplification of a short wavelength mode-locked thulium-doped fiber laser. APL Photonics, 2, 121302(2017).

    [16] T. Noronen, O. Okhotnikov, R. Gumenyuk. Electronically tunable thulium-holmium mode-locked fiber laser for the 1700-1800 nm wavelength band. Opt. Express, 24, 14703-14708(2016).

    [17] C. Li, C. Kong, K. K. Y. Wong. High energy noise-like pulse generation from a mode-locked thulium-doped fiber laser at 1.7 μm. IEEE Photonics J., 11, 1505106(2019).

    [18] S. Chen, Y. Chen, K. Liu, R. Sidharthan, H. Li, C. J. Chang, Q. J. Wang, D. Tang, S. Yoo. All-fiber short-wavelength tunable mode-locked fiber laser using normal dispersion thulium-doped fiber. Opt. Express, 28, 17570-17580(2020).

    [19] D. Anderson, M. Desaix, M. Lisak, M. L. Quiroga-Teixeiro. Wave breaking in nonlinear-optical fibers. J. Opt. Soc. Am. B, 9, 1358-1361(1992).

    [20] A. Chong, W. H. Renninger, F. W. Wise. All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ. Opt. Lett., 32, 2408-2410(2007).

    [21] P. Grelu, N. Akhmediev. Dissipative solitons for mode-locked lasers. Nat. Photonics, 6, 84-92(2012).

    [22] D. Strickland, G. Mourou. Compression of amplified chirped optical pulses. Opt. Commun., 56, 219-221(1985).

    [23] T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, A. Tünnermann. Femtosecond fiber CPA system emitting 830 W average output power. Opt. Lett., 35, 94-96(2010).

    [24] D. Luo, Y. Liu, C. Gu, Z. Zhu, Z. Deng, L. Zhou, Y. Di, G. Xie, W. Li. 130 W, 180 fs ultrafast Yb-doped fiber frequency comb based on chirped-pulse fiber amplification. Opt. Express, 28, 4817-4824(2020).

    [25] B. J. Ainslie, C. R. Day. A review of single-mode fibers with modified dispersion characteristics. J. Lightwave Technol., 4, 967-979(1986).

    [26] Q. Wang, T. Chen, M. Li, B. Zhang, Y. Lu, K. P. Chen. All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes. Appl. Phys. Lett., 103, 011103(2013).

    [27] B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, F. W. Wise. Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers. J. Opt. Soc. Am. B, 25, 1763-1770(2008).

    [28] P. Ciąćka, A. Rampur, A. Heidt, T. Feurer, M. Klimczak. Dispersion measurement of ultra-high numerical aperture fibers covering thulium, holmium, and erbium emission wavelengths. J. Opt. Soc. Am. B, 35, 1301-1307(2018).

    [29] L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, E. P. Ippen. Ultrashort-pulse fiber ring lasers. Appl. Phys. B, 65, 277-294(1997).

    [30] W. S. Man, H. Y. Tam, M. S. Demokan, P. K. A. Wai, D. Y. Tang. Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser. J. Opt. Soc. Am. B, 17, 28-33(2000).

    [31] Y. C. Tong, L. Y. Chan, H. K. Tsang. Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope. Electron. Lett., 33, 983-985(1997).

    [32] K. Goda, B. Jalali. Dispersive Fourier transformation for fast continuous single-shot measurements. Nat. Photonics, 7, 102-112(2013).

    [33] D. Y. Tang, L. M. Zhao, B. Zhao, A. Q. Liu. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers. Phys. Rev. A, 72, 043816(2005).

    [34] S. S. Xu, M. Liu, Z. W. Wei, A. P. Luo, W. C. Xu, Z. C. Luo. Multipulse dynamics in a Mamyshev oscillator. Opt. Lett., 45, 2620-2623(2020).

    [35] X. Liu, M. Pang. Revealing the buildup dynamics of harmonic mode-locking states in ultrafast lasers. Laser Photonics Rev., 13, 1800333(2019).

    [36] A. Zavyalov, R. Iliew, O. Egorov, F. Lederer. Dissipative soliton molecules with independently evolving or flipping phases in mode-locked fiber lasers. Phys. Rev. A, 80, 043829(2009).

    [37] K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, P. Grelu. Real-time observation of internal motion within ultrafast dissipative optical soliton molecules. Phys. Rev. Lett., 118, 243901(2017).

    [38] M. Horowitz, Y. Barad, Y. Silberberg. Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser. Opt. Lett., 22, 799-801(1997).

    [39] B. Dong, L. Wei, D. P. Zhou. Coupling between the small-core-diameter dispersion compensation fiber and single-mode fiber and its applications in fiber lasers. J. Lightwave Technol., 28, 1363-1367(2010).

    [40] W. H. Renninger, A. Chong, F. W. Wise. Area theorem and energy quantization for dissipative optical solitons. J. Opt. Soc. Am. B, 27, 1978-1982(2010).

    [41] M. D. Burns, P. C. Shardlow, P. Barua, T. L. Jefferson-Brain, J. K. Sahu, W. A. Clarkson. 47 W continuous-wave 1726 nm thulium fiber laser core-pumped by an erbium fiber laser. Opt. Lett., 44, 5230-5233(2019).

    Ji-Xiang Chen, Xiang-Yue Li, Ti-Jian Li, Ze-Yu Zhan, Meng Liu, Can Li, Ai-Ping Luo, Pu Zhou, Kenneth K.-Y. Wong, Wen-Cheng Xu, Zhi-Chao Luo. 1.7-μm dissipative soliton Tm-doped fiber laser[J]. Photonics Research, 2021, 9(5): 873
    Download Citation