• Photonics Research
  • Vol. 9, Issue 5, 873 (2021)
Ji-Xiang Chen1, Xiang-Yue Li1, Ti-Jian Li1, Ze-Yu Zhan1, Meng Liu1, Can Li2, Ai-Ping Luo1, Pu Zhou2, Kenneth K.-Y. Wong3, Wen-Cheng Xu1、4, and Zhi-Chao Luo1、*
Author Affiliations
  • 1Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices & Guangzhou Key Laboratory for Special Fiber Photonic Devices and Applications, South China Normal University, Guangzhou 510006, China
  • 2College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 3Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
  • 4e-mail: xuwch@scnu.edu.cn
  • show less
    DOI: 10.1364/PRJ.419273 Cite this Article Set citation alerts
    Ji-Xiang Chen, Xiang-Yue Li, Ti-Jian Li, Ze-Yu Zhan, Meng Liu, Can Li, Ai-Ping Luo, Pu Zhou, Kenneth K.-Y. Wong, Wen-Cheng Xu, Zhi-Chao Luo. 1.7-μm dissipative soliton Tm-doped fiber laser[J]. Photonics Research, 2021, 9(5): 873 Copy Citation Text show less
    Schematic of the dissipative soliton Tm-doped fiber laser.
    Fig. 1. Schematic of the dissipative soliton Tm-doped fiber laser.
    Single-pulse operation. (a) Mode-locked spectrum; (b) pulse train, inset: pulse train over 60 μs; (c) the measured autocorrelation trace of the uncompressed output pulse (blue) and the compressed pulse (red); (d) RF spectrum; (e) averaged shot-to-shot spectrum, inset: single-shot spectrum of the 200th round trip; (f) shot-to-shot spectrum with 350 round trips; (g) real-time spectral evolution by DFT.
    Fig. 2. Single-pulse operation. (a) Mode-locked spectrum; (b) pulse train, inset: pulse train over 60 μs; (c) the measured autocorrelation trace of the uncompressed output pulse (blue) and the compressed pulse (red); (d) RF spectrum; (e) averaged shot-to-shot spectrum, inset: single-shot spectrum of the 200th round trip; (f) shot-to-shot spectrum with 350 round trips; (g) real-time spectral evolution by DFT.
    Double pulse operation. (a) Spectrum with log and linear coordinates; (b) pulse train; (c) shot-to-shot spectrum over 350 round trips, inset: averaged shot-to-shot spectrum.
    Fig. 3. Double pulse operation. (a) Spectrum with log and linear coordinates; (b) pulse train; (c) shot-to-shot spectrum over 350 round trips, inset: averaged shot-to-shot spectrum.
    Soliton molecule. (a) Spectrum; (b) pulse train; (c) autocorrelation trace; (d) single-shot spectrum of the 100th round trip; (e) shot-to-shot spectra of 350 round trips.
    Fig. 4. Soliton molecule. (a) Spectrum; (b) pulse train; (c) autocorrelation trace; (d) single-shot spectrum of the 100th round trip; (e) shot-to-shot spectra of 350 round trips.
    Noise-like pulse. (a) Spectrum; (b) pulse train; inset: pulse train over 4 μs; (c) autocorrelation trace; (d) RF spectrum.
    Fig. 5. Noise-like pulse. (a) Spectrum; (b) pulse train; inset: pulse train over 4 μs; (c) autocorrelation trace; (d) RF spectrum.
    (a)–(d) Mode-locked spectra with different net-cavity GDD; (e)–(h) corresponding autocorrelation traces.
    Fig. 6. (a)–(d) Mode-locked spectra with different net-cavity GDD; (e)–(h) corresponding autocorrelation traces.
    Fiber TypeSMF28eTDFUHNA4
    GVD (ps2/m)−0.045−0.0450.085
    Length (m)2.33.26
    GDD (ps2)−0.104−0.1440.510
    Table 1. Fiber Dispersion Values
    Ji-Xiang Chen, Xiang-Yue Li, Ti-Jian Li, Ze-Yu Zhan, Meng Liu, Can Li, Ai-Ping Luo, Pu Zhou, Kenneth K.-Y. Wong, Wen-Cheng Xu, Zhi-Chao Luo. 1.7-μm dissipative soliton Tm-doped fiber laser[J]. Photonics Research, 2021, 9(5): 873
    Download Citation